Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Surface plasmon resonance-induced photoactivation of gold nanoparticles as bactericidal agents against methicillin-resistant Staphylococcus aureus

Authors Mocan L, Ilie I, Matea C, Tabaran F, Kalman E, Iancu C, Mocan T

Received 25 September 2013

Accepted for publication 17 January 2014

Published 22 March 2014 Volume 2014:9(1) Pages 1453—1461

DOI https://doi.org/10.2147/IJN.S54950

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3


Lucian Mocan,1 Ioana Ilie,2 Cristian Matea,1 Flaviu Tabaran,1 Ersjebet Kalman,1 Cornel Iancu,1 Teodora Mocan3

13rd Surgery Clinic, Department of Nanomedicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania; 2Department of Endocrinology, Department of Nanomedicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania; 3Department of Physiology, Department of Nanomedicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania

Abstract: Systemic infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and other bacteria are responsible for millions of deaths worldwide, and much of this mortality is due to the rise of antibiotic-resistant organisms as a result of natural selection. Gold nanoparticles synthesized using the standard wet chemical procedure were photoexcited using an 808 nm 2 W laser diode and further administered to MRSA bacteria. Flow cytometry, transmission electron microscopy, contrast phase microscopy, and fluorescence microscopy combined with immunochemical staining were used to examine the interaction of the photoexcited gold nanoparticles with MRSA bacteria. We show here that phonon–phonon interactions following laser photoexcitation of gold nanoparticles exhibit increased MRSA necrotic rates at low concentrations and short incubation times compared with MRSA treated with gold nanoparticles alone. These unique data may represent a step forward in the study of bactericidal effects of various nanomaterials, with applications in biology and medicine.

Keywords: MRSA, SPR, multi-drug resistant bacteria, infection, gold nanoparticles, laser

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]