Back to Journals » International Journal of Nanomedicine » Volume 13

Surface nanocavitation of titanium modulates macrophage activity

Authors Ariganello MB, Guadarrama Bello D, Rodriguez-Contreras A, Sadeghi S, Isola G, Variola F, Nanci A

Received 27 August 2018

Accepted for publication 8 November 2018

Published 5 December 2018 Volume 2018:13 Pages 8297—8308


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Dr Thomas Webster

Marianne B Ariganello,1,* Dainelys Guadarrama Bello,1,* Alejandra Rodriguez-Contreras,1 Shayan Sadeghi,1 Gaetano Isola,1 Fabio Variola,2,3 Antonio Nanci1,4

1Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montreal, QC, Canada; 2Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada; 3Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; 4Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada

*These authors contributed equally to this work

Background: Nanoscale surface modifications are widely touted to improve the biocompatibility of medically relevant materials. Immune cells, such as macrophages, play a critical role in the initial healing events following implantation.
Methods: To understand the response of macrophages to nanotopography better, we exposed U937-derived macrophages to a distinctive mesoporous titanium surface (TiNano) produced by a process of simple chemical nanocavitation, and to mechanically polished titanium (TiPolished) and glass coverslip (Glass) surfaces as controls. Cell numbers and morphology were evaluated. Osteopontin expression and that of the proinflammatory SPARC protein and its stabilin 1 receptor were analyzed. Release of inflammation-associated cytokines and chemokines was also measured.
Results: Compared to the two control surfaces, there were fewer U937 cells on TiNano, and these exhibited a more rounded morphology with long filopodia. The cells showed areas of punctate actin distribution, indicating formation of podosomes. Of the three proteins examined, only osteopontin’s immunofluorescence signal was clearly reduced. Irrespective of the substrate, the cytokine assay revealed important variations in expression levels of the multiple molecules analyzed and downregulation in a number of chemokines by the TiNano surface.
Conclusion: These results indicate that macrophages sense and respond to the physicochemical cueing generated by the nanocavitated surface, triggering cellular and molecular changes consistent with lesser inflammatory propensity. Given the previously reported beneficial outcome of this mesoporous surface on osteogenic activity, it could be presumed that modulation of the macrophagic response it elicits may also contribute to initial bone-integration events.

Keywords: nanotopography, inflammation, osteopontin, SPARC, stabilin 1, cytokines

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]