Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects

Authors Aravinthan A, Govarthanan M, Selvam K, Praburaman L, Selvankumar T, Balamurugan R, Kamala-Kannan S, Kim JH, Koildhasan M

Received 11 December 2014

Accepted for publication 5 February 2015

Published 11 March 2015 Volume 2015:10(1) Pages 1977—1983

DOI https://doi.org/10.2147/IJN.S79106

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Thomas J Webster


Adithan Aravinthan,1,* Muthusamy Govarthanan,2,3,* Kandasamy Selvam,4 Loganathan Praburaman,2,3 Thangasamy Selvankumar,3 Rangachari Balamurugan,1 Seralathan Kamala-Kannan,2 Jong-Hoon Kim1

1College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju, South Korea; 2Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, South Korea; 3PG and Research Department of Biotechnology, Mahendra Arts and Science College, Kalippatti, Namakkal, Tamil Nadu, India; 4Centre for Biotechnology, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamil Nadu, India

*These authors contributed equally to this work

Abstract: A rapid, green phytosynthesis of silver nanoparticles (AgNPs) using the aqueous extract of Helianthus tuberosus (sunroot tuber) was reported in this study. The morphology of the AgNPs was determined by transmission electron microscopy (TEM). Scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS) and X-ray powder diffraction (XRD) analysis confirmed the presence of AgNPs. Fourier transform infrared spectroscopy (FTIR) analysis revealed that biomolecules in the tuber extract were involved in the reduction and capping of AgNPs. The energy-dispersive spectroscopy (EDS) analysis of the AgNPs, using an energy range of 2–4 keV, confirmed the presence of elemental silver without any contamination. Further, the synthesized AgNPs were evaluated against phytopathogens such as Ralstonia solanacearum and Xanthomonas axonopodis. The AgNPs (1–4 mM) extensively reduced the growth rate of the phytopathogens. In addition, the cytotoxic effect of the synthesized AgNPs was analyzed using rat splenocytes. The cell viability was decreased according to the increasing concentration of AgNPs and 67% of cell death was observed at 100 µg/mL.

Keywords: cytotoxicity, Helianthus tuberosus, nanobiotechnology, phytosynthesis, splenocytes

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]