Back to Journals » Clinical Ophthalmology » Volume 7

Sulforaphane-induced transcription of thioredoxin reductase in lens: possible significance against cataract formation

Authors Varma SD, Chandrasekaran K, Kovtun S

Received 8 August 2013

Accepted for publication 29 August 2013

Published 24 October 2013 Volume 2013:7 Pages 2091—2098


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Shambhu D Varma, Krish Chandrasekaran, Svitlana Kovtun

Department of Ophthalmology and Visual Sciences, University of Maryland, Baltimore, MD, USA

Purpose: Sulforaphane is a phytochemically derived organic isothiocyanate 1-isothiocyanato-4-methylsulfinyl-butane present naturally in crucifers, including broccoli and cauliflower. Biochemically, it has been reported to induce the transcription of several antioxidant enzymes. Since such enzymes have been implicated in preventing cataract formation triggered by the intraocular generation of oxy-radical species, the purpose of this investigation was to examine whether it could induce the formation of antioxidant enzymes in the eye lens. Thioredoxin reductase (TrxR) was used as the target of such induction.
Methods: Mice lenses were cultured for an overnight period of 17 hours in medium 199 fortified with 10% fetal calf serum. Incubation was conducted in the absence and presence of sulforaphane (5 µM). Subsequently, the lenses were homogenized in phosphate-buffered saline (PBS), followed by centrifugation. TrxR activity was determined in the supernatant by measuring the nicotinamide adenine dinucleotide phosphate (reduced) (NADPH)-dependent reduction of 5,5´-dithiobis-2-nitrobenzoic acid (DTNB). Non-specific reduction of DTNB was corrected for by conducting parallel determinations in the presence of aurothiomalate. The reduction of DTNB was followed spectrophotometrically at 410 nm.
Results: The activity of TrxR in the lenses incubated with sulforaphane was found to be elevated to 18 times of that observed in lenses incubated without sulforaphane. It was also noticeably higher in the lenses incubated without sulforaphane than in the un-incubated fresh lenses. However, this increase was much lower than that observed for lenses incubated with sulforaphane.
Conclusion: Sulforaphane has been found to enhance TrxR activity in the mouse lens in culture. In view of the protective effect of the antioxidant enzymes and certain nutrients against cataract formation, the findings suggest that it would, by virtue of its ability to enhance the activity of such enzymes, prevent the tissue against oxidative stress that leads to cataract formation. Additional studies with the activities of other antioxidant enzymes such as quinone oxidoreductase and the levels of Nrf2 are in progress.

Keywords: oxidative stress, cataract, thioredoxin reductase, NADPH

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other articles by this author:

Effect of caffeine on the intraocular pressure in patients with primary open angle glaucoma

Chandra P, Gaur A, Varma S

Clinical Ophthalmology 2011, 5:1623-1629

Published Date: 16 November 2011

Prevention of cataract in diabetic mice by topical pyruvate

Hegde KR, Kovtun S, Varma SD

Clinical Ophthalmology 2011, 5:1141-1145

Published Date: 18 August 2011

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010