Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Subacute toxicity of cadmium on hepatocytes and nephrocytes in the rat could be considered as a green biosynthesis of nanoparticles

Authors Trabelsi H, Azzouz I, Sakly M, Abdelmelek H

Received 22 October 2012

Accepted for publication 22 December 2012

Published 14 March 2013 Volume 2013:8(1) Pages 1121—1128


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Hamdi Trabelsi, Inès Azzouz, Mohsen Sakly, Hafedh Abdelmelek
Laboratory of Physiologie Intégrée, Faculty of Sciences of Bizerte, Carthage University, Tunisia

Abstract: The purpose was to study the toxicity of cadmium (Cd) and to explore its potential to generate nanoparticles during detoxification. In order to demonstrate this, in vivo fluorescence imaging, X-ray diffraction, and flow cytometry were performed. The in vivo imaging showed a fluorescence signal after Cd treatment (CdCl2, 1.50 mg/Kg, intraperitoneally). By contrast, the control-rat fluorescence was negative. The fluorescence was divided into three colors, red, yellow, and green, and probably indicates the presence of quantum dots. X-ray diffraction results revealed the presence of Cd sulfide (CdS) and/or Cd selenide (CdSe) nanoparticles following Cd injection in the liver (6.52 nm) and kidneys (56.30 nm). Interestingly, flow cytometry revealed a heterogeneous size distribution and a homogeneous granularity of synthesized nanoparticles. Using the green fluorescence channel and the red fluorescence channel, a narrow green emission spectrum and a broad red emission spectrum were detected, respectively, by cytometric analysis.

Keywords: XRD, in vivo imaging, flow cytometry, quantum dots, cadmium sulfide, cadmium selenide

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other article by this author:

Nanotoxicological evaluation of oxidative responses in rat nephrocytes induced by cadmium

Trabelsi H, Azzouz I, Ferchichi S, Tebourbi O, Sakly M, Abdelmelek H

International Journal of Nanomedicine 2013, 8:3447-3453

Published Date: 6 September 2013

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

A new recombinant factor VIII: from genetics to clinical use

Kannicht C, Kohla G, Tiemeyer M, Walter O, Sandberg H

Drug Design, Development and Therapy 2015, 9:3817-3819

Published Date: 23 July 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010