Back to Journals » Clinical Ophthalmology » Volume 13

Steady-State Pattern Electroretinogram and Frequency Doubling Technology in Adult Dyslexic Readers

Authors Schiavi C, Finzi A, Cellini M

Received 14 September 2019

Accepted for publication 27 November 2019

Published 11 December 2019 Volume 2019:13 Pages 2451—2459

DOI https://doi.org/10.2147/OPTH.S229898

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Scott Fraser


Costantino Schiavi, Alessandro Finzi, Mauro Cellini

Department of Experimental, Diagnostic, and Specialty Medicine, Ophthalmology Service, University of Bologna, Bologna 40138, Italy

Correspondence: Mauro Cellini
Policlinico Sant’Orsola-Malpighi, Ophthalmology Service, University of Bologna, Via Pelagio Palagi 9, Bologna 40138, Italy
Tel/Fax +39 0516362835
Email mauro.cellini@gmail.com

Purpose: Dyslexia is a reading disorder with neurological deficit of the magnocellular pathway. The aim of our study was to evaluate the functionality of the magnocellular–Y (M–Y) retinal ganglion cells in adult dyslexic subjects using steady-state pattern electroretinogram and frequency doubling perimetry.
Methods: Ten patients with dyslexia (7 females and 3 males), mean age 28.7 ± 5.9 years, and 10 subjects without dyslexia (6 females and 4 males), mean age 27.8 ± 4.1 years, were enrolled in the study and underwent both steady-state pattern-electroretinogram examination and frequency doubling perimetry.
Results: There was a significant difference in the amplitude of the steady-state pattern electroretinogram of the dyslexic group and the healthy controls (0.610±0.110 μV vs 1.250±0.296 μV; p=0.0001). Furthermore, in the dyslexic group we found a significant difference between the right eye and the left eye (0.671±0.11 μV vs 0.559±0.15 μV; p=0.001). With frequency doubling perimetry, the pattern standard deviation index increased in dyslexic eyes compared to healthy controls (4.40±0.81 dB vs 2.99±0.35 dB; p=0.0001) and in the left eye versus the right eye of the dyslexic group (4.43±1.10 dB vs 3.66±0.96 dB; p=0.031). There was a correlation between the reduction in the wave amplitude of the pattern electroretinogram and the simultaneous increase in the pattern standard deviation values (r=0.80; p=0.001). This correlation was also found to be present in the left eye (r=0.93; p<0.001) and the right eye (r=0.81; p=0.005) of dyslexic subjects.
Conclusion: Our study shows that there was an alteration of the activity of M–Y retinal ganglion cells, especially in the left eye. It confirms that in dyslexia there is a deficit of visual attention with damage not only of the magnocellular-dorsal pathway but also of the M-Y retinal ganglion cells.

Keywords: steady-state pattern-electroretinogram, frequency doubling technology perimetry, retino-geniculate pathways, dyslexia
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]