Back to Journals » Therapeutics and Clinical Risk Management » Volume 11

Statin therapy in patients with acute coronary syndrome: low-density lipoprotein cholesterol goal attainment and effect of statin potency

Authors Chinwong D, Patumanond J, Chinwong S, Siriwattana K, Gunaparn S, Joseph Hall J, Phrommintikul A

Received 9 October 2014

Accepted for publication 7 November 2014

Published 23 January 2015 Volume 2015:11 Pages 127—136

DOI https://doi.org/10.2147/TCRM.S75608

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Professor Garry Walsh

Dujrudee Chinwong,1,2 Jayanton Patumanond,3 Surarong Chinwong,1 Khanchai Siriwattana,4 Siriluck Gunaparn,5 John Joseph Hall,6 Arintaya Phrommintikul5

1Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand; 2Clinical Epidemiology Program, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; 3Center of Excellence in Applied Epidemiology, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand; 4Division of Medicine, Nakornping Hospital, Chiang Mai, Thailand; 5Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; 6Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia

Background: Elevated low-density lipoprotein cholesterol (LDL-C) is associated with an increased risk of coronary artery disease. Current guidelines recommend an LDL-C target of <70 mg/dL (<1.8 mmol/L) for acute coronary syndrome (ACS) patients, and the first-line treatment to lower lipids is statin therapy. Despite current guidelines and the efficacious lipid-lowering agents available, about half of patients at very high risk, including ACS patients, fail to achieve their LDL-C goal. This study assessed LDL-C goal attainment according to use of high and low potency statins in routine practice in Thailand.
Methods: A retrospective cohort study was performed by retrieving data from medical records and the electronic hospital database for a tertiary care hospital in Thailand between 2009 and 2011. Included were ACS patients treated with statins at baseline and with follow-up of LDL-C levels. Patients were divided into high or low potency statin users, and the proportion reaching the LDL-C goal of <70 mg/dL was determined. A Cox proportional hazard model was applied to determine the relationship between statin potency and LDL-C goal attainment. Propensity score adjustment was used to control for confounding by indication.
Results: Of 396 ACS patients (60% males, mean age 64.3±11.6 years), 229 (58%) were treated with high potency statins and 167 (42%) with low potency statins. A quarter reached their target LDL-C goal (25% for patients on high potency statins and 23% on low potency statins). High potency statins were not associated with increased LDL-C goal attainment (adjusted hazards ratio 1.22, 95% confidence interval 0.79–1.88; P=0.363).
Conclusion: There was no significant effect of high potency statins on LDL-C goal attainment. Moreover, this study showed low LDL-C goal attainment for patients on either low or high potency statins. The reasons for the low LDL-C goal attainment rate warrants further investigation.

Keywords:
LDL-C goal attainment, statins, potency statins, high risk, propensity score

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Readers of this article also read:

Perioperative management of hemophilia patients receiving total hip and knee arthroplasty: a complication report of two cases

Tateiwa T, Takahashi Y, Ishida T, Kubo K, Masaoka T, Shishido T, Sano K, Yamamoto K

Therapeutics and Clinical Risk Management 2015, 11:1383-1389

Published Date: 15 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010