Back to Journals » Journal of Pain Research » Volume 11

Spotlight on topographical pressure pain sensitivity maps: a review

Authors Alburquerque-Sendín F, Madeleine P, Fernández-de-las-Peñas C, Camargo PR, Salvini TF

Received 28 August 2017

Accepted for publication 2 November 2017

Published 18 January 2018 Volume 2018:11 Pages 215—225


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Katherine Hanlon

Francisco Alburquerque-Sendín,1 Pascal Madeleine,2 César Fernández-de-las-Peñas,3 Paula Rezende Camargo,4 Tania Fátima Salvini4

1Department of Socio-Sanitary Sciences, Radiology and Physical Medicine, Universidad de Córdoba, Córdoba, Spain; 2Physical Activity and Human Performance Group, SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark; 3Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, Madrid, Spain; 4Department of Physical Therapy, Federal University of São Carlos, São Carlos, SP, Brazil

Abstract: Mechanical hyperalgesia defined as decreased pressure pain thresholds (PPTs) is commonly associated with pain. In this narrative review, we report the current state of the art within topographical pressure sensitivity maps. Such maps are based on multiple PPT assessments. The PPTs are assessed by an a priori defined grid with special focus on both spatial and temporal summation issues. The grid covers the muscle or the body region of interest using absolute or relative values determined from anatomical landmarks or anthropometric values. The collected PPTs are interpolated by Shepard or Franke and Nielson interpolation methods to create topographical pressure sensitivity maps. This new imaging technique has proven to be valuable in various disciplines including exercise physiology, neurology, physical therapy, occupational medicine, oncology, orthopedics, and sport sciences. The reviewed papers have targeted different body regions like the scalp, low back, neck–shoulder, and upper and lower extremities. The maps have delineated spatial heterogeneity in the pressure pain sensitivity underlining the different extents of pressure pain hyperalgesia in both experimentally induced and disease-associated pain conditions. Furthermore, various intervention studies have proven the utility of topographical pressure pain sensitivity maps. Topographical pressure pain sensitivity maps have contributed to revealing the efficacy of therapeutic, ergonomic, or training interventions that aim at reducing pain.

Keywords: pressure pain, topographical, muscle, musculo-tendinous, hyperalgesia

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]