Back to Journals » Drug Design, Development and Therapy » Volume 11

Spotlight on the 9-valent HPV vaccine

Authors Lopalco PL

Received 13 July 2016

Accepted for publication 9 September 2016

Published 20 December 2016 Volume 2017:11 Pages 35—44

DOI https://doi.org/10.2147/DDDT.S91018

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Akshita Wason

Peer reviewer comments 2

Editor who approved publication: Dr Anastasios Lymperopoulos

Pier Luigi Lopalco

Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy

Abstract: Starting in 2006, vaccination against human papillomavirus (HPV) has been progressively implemented in most developed countries. Two vaccines have been successfully used, a bivalent vaccine targeting HPV-related cancers (bHPV) and a quadrivalent vaccine (qHPV) targeting both HPV-related cancers and genital warts. Between December 2014 and June 2015, a new nonavalent HPV vaccine (9vHPV) was granted marketing authorization in the USA and Europe. The 9vHPV was developed from the qHPV and includes five additional HPV types that should increase the level of protection toward HPV-related cancers. Efficacy and/or immunogenicity of 9vHPV has been assessed in eight clinical studies. The 9vHPV vaccine induced a very robust immune response against all vaccine types, with seroconversion rates close to 100%. The safety profile of 9vHPV is comparable to that of qHPV. Local reactions, especially swelling, have been more frequently reported after 9vHPV than qHPV, and this slightly increases when the 9vHPV is coadministered with other vaccines. The additional coverage offered by the 9vHPV may prevent a significant proportion of HPV-related cancers (variable between 8% and 18%) depending on the local distribution of high-risk HPV types in the population. It is impossible, at present, to anticipate the actual impact of the wide use of the 9vHPV in comparison with the bHPV or the qHPV, since it depends on many variables including duration of protection, potential cross-protection toward nonvaccine types, and herd immunity effect.

Keywords: human papillomavirus vaccine, immunogenicity, vaccine safety, cervical cancer, head and neck cancer, genital warts

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]