Back to Journals » Neuropsychiatric Disease and Treatment » Volume 16

Spatial Patterns of Amyloid Deposition in Patients with Chronic Focal or Diffuse Traumatic Brain Injury Using 18F-FPYBF-2 PET

Authors Ubukata S, Oishi N, Higashi T, Kagawa S, Yamauchi H, Okuyama C, Watanabe H, Ono M, Saji H, Aso T, Murai T, Ueda K

Received 1 July 2020

Accepted for publication 12 October 2020

Published 12 November 2020 Volume 2020:16 Pages 2719—2732

DOI https://doi.org/10.2147/NDT.S268504

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Taro Kishi


Shiho Ubukata,1,2 Naoya Oishi,2 Tatsuya Higashi,3,4 Shinya Kagawa,3 Hiroshi Yamauchi,3 Chio Okuyama,3 Hiroyuki Watanabe,5 Masahiro Ono,5 Hideo Saji,5 Toshihiko Aso,1 Toshiya Murai,1 Keita Ueda1

1Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 2Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 3Shiga Medical Center Research Institute, Moriyama, Japan; 4Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan; 5Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan

Correspondence: Shiho Ubukata
Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo, Kyoto 606-8507, Japan
Tel +81-75-751-4947
Email ubukata@kuhp.kyoto-u.ac.jp

Aim: Amyloid-β (Aβ) accumulation, accelerated by traumatic brain injury (TBI), may play a crucial role in neurodegeneration in chronic-stage TBI. The injury type could influence Aβ dynamics because of TBI’s complex, heterogeneous nature. We, therefore, investigated spatial patterns of amyloid deposition according to injury type after TBI using 5-(5-(2-(2-(2-[F]-fluoroethoxy)ethoxy)ethoxy)benzofuran-2-yl)-N-methylpyridin-2-amine (18F-FPYBF-2) positron emission tomography (PET).
Methods: Altogether, 20 patients with chronic TBI [12 with focal injury, 8 with diffuse axonal injury (DAI)] underwent 18F-FPYBF-2 PET, structural magnetic resonance imaging (MRI), and neuropsychological examination. Additionally, 50 healthy controls underwent either 18F-FPYBF-2 PET (n=30) or structural MRI (n=20).
Results: Standardized uptake value ratio (SUVR) on PET images and regional brain volumes were measured in four cortical (frontal, parietal, occipital, temporal) and subcortical (combined caudate, putamen, pallidum, thalamus) regions. Patients with DAI showed significantly increased (compared with controls) SUVR in occipital and temporal cortices and decreased brain volume in occipital cortex (corrected p < 0.05). Although patients with focal injury showed decreased SUVR in all regions except occipital cortex, there were no significant differences (compared with controls) in the SUVR in any regions. There were no significant correlations between increased SUVR and neuropsychological impairments in patients with DAI.
Conclusion: Varying spatial patterns of amyloid deposition suggest amyloid pathology diversity depending on the injury type in chronic-TBI patients.

Keywords: amyloid deposition, chronic, diffuse axonal injury, focal injury, PET

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]