Back to Journals » International Journal of Nanomedicine » Volume 14

Slp-coated liposomes for drug delivery and biomedical applications: potential and challenges

Authors Luo G, Yang Q, Yao B, Tian Y, Hou R, Shao A, Li M, Feng Z, Wang W

Received 6 October 2018

Accepted for publication 7 January 2019

Published 20 February 2019 Volume 2019:14 Pages 1359—1383


Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Cristina Weinberg

Peer reviewer comments 2

Editor who approved publication: Dr Linlin Sun

Gan Luo,1,2 Qingliang Yang,1 Bingpeng Yao,1,3 Yangfan Tian,4 Ruixia Hou,1 Anna Shao,1 Mengting Li,1 Zilin Feng,1 Wenxi Wang1

1Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China; 2Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; 3Department of Green Pharmaceutics, Jianxing Honors College, Zhejiang University of Technology, Hangzhou, Zhejiang, China; 4Department of Pediatric Surgery, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China

Abstract: Slp forms a crystalline array of proteins on the outermost envelope of bacteria and archaea with a molecular weight of 40–200 kDa. Slp can self-assemble on the surface of liposomes in a proper environment via electrostatic interactions, which could be employed to functionalize liposomes by forming Slp-coated liposomes for various applications. Among the molecular characteristics, the stability, adhesion, and immobilization of biomacromolecules are regarded as the most meaningful. Compared to plain liposomes, Slp-coated liposomes show excellent physicochemical and biological stabilities. Recently, Slp-coated liposomes were shown to specifically adhere to the gastrointestinal tract, which was attributed to the “ligand–receptor interaction” effect. Furthermore, Slp as a “bridge” can immobilize functional biomacromolecules on the surface of liposomes via protein fusion technology or intermolecular forces, endowing liposomes with beneficial functions. In view of these favorable features, Slp-coated liposomes are highly likely to be an ideal platform for drug delivery and biomedical uses. This review aims to provide a general framework for the structure and characteristics of Slp and the interactions between Slp and liposomes, to highlight the unique properties and drug delivery as well as the biomedical applications of the Slp-coated liposomes, and to discuss the ongoing challenges and perspectives.

Keywords: S-layer protein, liposomes, self-assembly, interactions, drug delivery, biomedical applications

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]