Back to Journals » International Journal of Nanomedicine » Volume 12

Skeleton labeled 13C-carbon nanoparticles for the imaging and quantification in tumor drainage lymph nodes

Authors P Xie, Xin Q, Yang S, He T, Huang Y, Zeng G, Ran M, Tang XH

Received 11 February 2017

Accepted for publication 10 April 2017

Published 11 July 2017 Volume 2017:12 Pages 4891—4899

DOI https://doi.org/10.2147/IJN.S134493

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Akshita Wason

Peer reviewer comments 2

Editor who approved publication: Dr Lei Yang


Ping Xie,1 Qian Xin,2 Sheng-Tao Yang,3 Tiantian He,2,4 Yuanfang Huang,2 Guangfu Zeng,2,4 Maosheng Ran,2,5 Xiaohai Tang2

1State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 2Chongqing Lummy Pharmaceutical Co., Ltd, Chongqing, 3College of Chemistry & Environment Protection Engineering, Southwest University for Nationalities, 4College of Life Sciences, Sichuan Normal University, 5State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China

Abstract: Carbon nanoparticles (CNPs) have been widely used in tumor drainage lymph node (TDLN) imaging, drug delivery, photothermal therapy, and so on. However, during the theranostic applications, the accumulation efficiency of CNPs in target organs is unknown yet, which largely hinders the extension of CNPs into clinical uses. Herein, we prepared skeleton-labeled 13C-CNPs that had identical properties to commercial CNPs suspension injection (CNSI) for the imaging and quantification in TDLN. 13C-CNPs were prepared by arc discharge method, followed by homogenization with polyvinylpyrrolidone. The size distribution and morphology of 13C-CNPs were nearly the same as those of CNSI under transmission electron microscope. The hydrodynamic radii of both 13C-CNPs and CNSI were similar, too. According to X-ray photoelectron spectroscopy and infrared spectroscopy analyses, the chemical compositions and chemical states of elements were also nearly identical for both labeled and commercial forms. The skeleton labeling of 13C was reflected by the shift of G-band toward lower frequency in Raman spectra. 13C-CNPs showed competitive performance in TDLN imaging, where the three lymph nodes (popliteal lymph node, common iliac artery lymph node, and paraaortic lymph node) were stained black upon the injection into the hind extremity of mice. The direct quantification of 13C-CNPs indicated that 877 µg/g of 13C-CNPs accumulated in the first station of TDLN (popliteal lymph node). The second station of TDLN (common iliac artery lymph node) had even higher accumulation level (1,062 µg/g), suggesting that 13C-CNPs migrated efficiently along lymphatic vessel. The value decreased to 405 µg/g in the third station of TDLN (paraaortic lymph node). Therefore, the 13C-CNPs provided quantitative approach to image and quantify CNSI in biological systems. The implication in biomedical applications and biosafety evaluations of CNSI is discussed.

Keywords:
carbon nanoparticles suspension injection, 13C-labeling, isotope ratio mass spectroscopy, quantification, bioeffect of nanomaterials

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]