Back to Browse Journals » International Journal of Nanomedicine » Volume 7

Simple filter microchip for rapid separation of plasma and viruses from whole blood

Authors Wang SQ, Sarenac D, Chen MH, Huang SH, Giguel FF, Kuritzkes DR, Demirci U

Published Date September 2012 Volume 2012:7 Pages 5019—5028

DOI http://dx.doi.org/10.2147/IJN.S32579

Received 3 April 2012, Accepted 5 July 2012, Published 17 September 2012

ShuQi Wang,1 Dusan Sarenac,1 Michael H Chen,1 Shih-Han Huang,1 Francoise F Giguel,2 Daniel R Kuritzkes,3 Utkan Demirci1,4

1
Bio-acoustic MEMS in Medicine Laboratory, Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; 2Infectious Diseases Unit, Massachusetts General Hospital, Boston, MA, USA; 3Section of Retroviral Therapeutics, Brigham and Women's Hospital, Boston, MA, USA; 4Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA

Abstract: Sample preparation is a significant challenge for detection and sensing technologies, since the presence of blood cells can interfere with the accuracy and reliability of virus detection at the nanoscale for point-of-care testing. To the best of our knowledge, there is not an existing on-chip virus isolation technology that does not use complex fluidic pumps. Here, we presented a lab-on-a-chip filter device to isolate plasma and viruses from unprocessed whole blood based on size exclusion without using a micropump. We demonstrated that viruses (eg, HIV) can be separated on a filter-based chip (2-µm pore size) from HIV-spiked whole blood at high recovery efficiencies of 89.9% ± 5.0%, 80.5% ± 4.3%, and 78.2% ± 3.8%, for viral loads of 1000, 10,000 and 100,000 copies/mL, respectively. Meanwhile, 81.7% ± 6.7% of red blood cells and 89.5% ± 2.4% of white blood cells were retained on 2 µm pore–sized filter microchips. We also tested these filter microchips with seven HIV-infected patient samples and observed recovery efficiencies ranging from 73.1% ± 8.3% to 82.5% ± 4.1%. These results are first steps towards developing disposable point-of-care diagnostics and monitoring devices for resource-constrained settings, as well as hospital and primary care settings.

Keywords: microchip, filtration, virus isolation, plasma separation, point-of-care

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Other article by this author:

Portable microfluidic chip for detection of Escherichia coli in produce and blood

Wang S, Inci F, Chaunzwa TL, Ramanujam A, Vasudevan A, Subramanian S, Ip AC, Sridharan B, Gurkan UA, Demirci U

International Journal of Nanomedicine 2012, 7:2591-2600

Published Date: 29 May 2012

Readers of this article also read:

Polymeric nanoparticle-based delivery of microRNA-199a-3p inhibits proliferation and growth of osteosarcoma cells

Zhang L, Iyer AK, Yang X, Kobayashi E, Guo Y, Mankin H, Hornicek FJ, Amiji MM, Duan Z

International Journal of Nanomedicine 2015, 10:2913-2924

Published Date: 15 April 2015

Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering

He X, Feng B, Huang C, Wang H, Ge Y, Hu R, Yin M, Xu Z, Wang W, Fu W, Zheng J

International Journal of Nanomedicine 2015, 10:2089-2099

Published Date: 17 March 2015

Suicidal ideation and the risk of suicide in patients with fibromyalgia: a comparison with non-pain controls and patients suffering from low-back pain

Jimenez-Rodriguez I, Garcia-Leiva JM, Jimenez-Rodriguez BM, Condés-Moreno E, Rico-Villademoros F, Calandre EP

Neuropsychiatric Disease and Treatment 2014, 10:625-630

Published Date: 16 April 2014

Enhancement of the dissolution rate and bioavailability of fenofibrate by a melt-adsorption method using supercritical carbon dioxide

Cha KH, Cho KJ, Kim MS, Kim JS, Park HJ, Park J, Cho W, Park JS, Hwang SJ

International Journal of Nanomedicine 2012, 7:5565-5575

Published Date: 25 October 2012

Mannan-modified Ad5-PTEN treatment combined with docetaxel improves the therapeutic effect in H22 tumor-bearing mice

Liu Z, Li J, Li J, Huang J, Ke F, Qi Q, Jiang X, Zhong Z

International Journal of Nanomedicine 2012, 7:5039-5049

Published Date: 17 September 2012

Changes in the intestinal absorption mechanism of icariin in the nanocavities of cyclodextrins

Zhang Y, Wang QS, Cui YL, Meng FC, Lin KM

International Journal of Nanomedicine 2012, 7:4239-4249

Published Date: 2 August 2012

Portable microfluidic chip for detection of Escherichia coli in produce and blood

Wang S, Inci F, Chaunzwa TL, Ramanujam A, Vasudevan A, Subramanian S, Ip AC, Sridharan B, Gurkan UA, Demirci U

International Journal of Nanomedicine 2012, 7:2591-2600

Published Date: 29 May 2012

Comparison of two kinds of nanomedicine for targeted gene therapy: premodified or postmodified gene delivery systems

Jiang Z, Sun C, Yin Z, Zhou F, Ge L, Liu X, Kong F

International Journal of Nanomedicine 2012, 7:2019-2031

Published Date: 17 April 2012

Nanostructured model implants for in vivo studies: influence of well-defined nanotopography on de novo bone formation on titanium implants

Ballo A, Agheli H, Lausmaa J, Thomsen P, Petronis S

International Journal of Nanomedicine 2011, 6:3415-3428

Published Date: 20 December 2011