Back to Journals » International Journal of Nanomedicine » Volume 11

Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species

Authors Lee MJ, Lee SJ, Yun SJ, Jang J, Kang H, Kim K, Choi I, Park S

Received 21 August 2015

Accepted for publication 7 October 2015

Published 22 December 2015 Volume 2016:11 Pages 55—68


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Thomas Webster

Mi Jin Lee,1 Seung Jun Lee,1,2,* Su Jin Yun,1,2,* Ji-Young Jang,3 Hangoo Kang,3 Kyongmin Kim,1,2 In-Hong Choi,3,4 Sun Park1,2

1Department of Microbiology, Ajou University School of Medicine, 2Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, 3Department of Microbiology, The Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea; 4Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea

*These authors contributed equally to this work

The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs’ treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs’ treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS.

Keywords: metal nanoparticles, carbohydrate metabolism, lactic acid, cytotoxicity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]