Back to Journals » Nanotechnology, Science and Applications » Volume 4

Significance of novel bioinorganic anodic aluminum oxide nanoscaffolds for promoting cellular response

Authors Poinern GE, Shackleton, Shariful I, Fawcett D

Published 14 January 2011 Volume 2011:4 Pages 11—24

DOI https://doi.org/10.2147/NSA.S13913

Review by Single-blind

Peer reviewer comments 4


Gérrard Eddy Jai Poinern, Robert Shackleton, Shariful Islam Mamun, Derek Fawcett
Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, Western Australia, Australia

Abstract: Tissue engineering is a multidisciplinary field that can directly benefit from the many advancements in nanotechnology and nanoscience. This article reviews a novel biocompatible anodic aluminum oxide (AAO, alumina) membrane in terms of tissue engineering. Cells respond and interact with their natural environment, the extracellular matrix, and the landscape of the substrate. The interaction with the topographical features of the landscape occurs both in the micrometer and nanoscales. If all these parameters are favorable to the cell, the cell will respond in terms of adhesion, proliferation, and migration. The role of the substrate/scaffold is crucial in soliciting a favorable response from the cell. The size and type of surface feature can directly influence the response and behavior of the cell. In the case of using an AAO membrane, the surface features and porosity of the membrane can be dictated at the nanoscale during the manufacturing stage. This is achieved by using general laboratory equipment to perform a relatively straightforward electrochemical process. During this technique, changing the operational parameters of the process directly controls the nanoscale features produced. For example, the pore size, pore density, and, hence, density can be effectively controlled during the synthesis of the AAO membrane. In addition, being able to control the pore size and porosity of a biomaterial such as AAO significantly broadens its application in tissue engineering.

Keywords: anodic aluminum oxide, nanoscaffolds, cellular response, tissue engineering

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]