Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Shikonin-loaded antibody-armed nanoparticles for targeted therapy of ovarian cancer

Authors Matthaiou EI, Barar J, Sandaltzopoulos R, Li C, Coukos G, Omidi Y

Received 21 July 2013

Accepted for publication 29 September 2013

Published 15 April 2014 Volume 2014:9(1) Pages 1855—1870

DOI https://doi.org/10.2147/IJN.S51880

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Efthymia-Iliana Matthaiou,1,2 Jaleh Barar,1,3 Raphael Sandaltzopoulos,2 Chunsheng Li,1 George Coukos,1,4 Yadollah Omidi1,3

1Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 2Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece; 3Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; 4Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland

Abstract: Conventional chemotherapy of ovarian cancer often fails because of initiation of drug resistance and/or side effects and trace of untouched remaining cancerous cells. This highlights an urgent need for advanced targeted therapies for effective remediation of the disease using a cytotoxic agent with immunomodulatory effects, such as shikonin (SHK). Based on preliminary experiments, we found SHK to be profoundly toxic in ovarian epithelial cancer cells (OVCAR-5 and ID8 cells) as well as in normal ovarian IOSE-398 cells, endothelial MS1 cells, and lymphocytes. To limit its cytotoxic impact solely to tumor cells within the tumor microenvironment (TME), we aimed to engineer SHK as polymeric nanoparticles (NPs) with targeting moiety toward tumor microvasculature. To this end, using single/double emulsion solvent evaporation/diffusion technique with sonication, we formulated biodegradable NPs of poly(lactic-co-glycolic acid) (PLGA) loaded with SHK. The surface of NPs was further decorated with solubilizing agent polyethylene glycol (PEG) and tumor endothelial marker 1 (TEM1)/endosialin-targeting antibody (Ab) through carbodiimide/N-hydroxysuccinimide chemistry. Having characterized the physicochemical and morphological properties of NPs, we studied their drug-release profiles using various kinetic models. The biological impact of NPs was also evaluated in tumor-associated endothelial MS1 cells, primary lymphocytes, and epithelial ovarian cancer OVCAR-5 cells. Based on particle size analysis and electron microscopy, the engineered NPs showed a smooth spherical shape with size range of 120 to 250 nm and zeta potential value of -30 to -40 mV. Drug entrapment efficiency was ~80%–90%, which was reduced to ~50%–60% upon surface decoration with PEG and Ab. The liberation of SHK from NPs showed a sustained-release profile that was best fitted with Wagner log-probability model. Fluorescence microscopy and flow cytometry analysis showed active interaction of Ab-armed NPs with TEM1-positive MS1 cells, but not with TEM1-negative MS1 cells. While exposure of the PEGylated NPs for 2 hours was not toxic to lymphocytes, long-term exposure of the Ab-armed and PEGylated NPs was significantly toxic to TEM1-positive MS1 cells and OVCAR-5 cells. Based on these findings, we propose SHK-loaded Ab-armed PEGylated PLGA NPs as a novel nanomedicine for targeted therapy of solid tumors.

Keywords:
nanomedicine, nanoparticle, ovarian cancer, shikonin, targeted therapy, tumor vasculature


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility

Zaloga J, Janko C, Nowak J, Matuszak J, Knaup S, Eberbeck D, Tietze R, Unterweger H, Friedrich RP, Duerr S, Heimke-Brinck R, Baum E, Cicha I, Dörje F, Odenbach S, Lyer S, Lee G, Alexiou C

International Journal of Nanomedicine 2014, 9:4847-4866

Published Date: 20 October 2014

Diagnostic and therapeutic utility of neuroimaging in depression: an overview

Wise T, Cleare AJ, Herane A, Young AH, Arnone D

Neuropsychiatric Disease and Treatment 2014, 10:1509-1522

Published Date: 19 August 2014

Level of agreement between self-rated and clinician-rated instruments when measuring major depressive disorder in the Thai elderly: a 1-year assessment as part of the THAISAD study

Wongpakaran N, Wongpakaran T, Wannarit K, Saisavoey N, Pinyopornpanish M, Lueboonthavatchai P, Apisiridej N, Srichan T, Ruktrakul R, Satthapisit S, Nakawiro D, Hiranyatheb T, Temboonkiat A, Tubtimtong N, Rakkhajeekul S, Wongtanoi B, Tanchakvaranont S, Bookkamana P, Srisutasanavong U, Nivataphand R, Petchsuwan D

Clinical Interventions in Aging 2014, 9:377-382

Published Date: 25 February 2014

Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking

Sibov TT, Pavon LF, Miyaki LA, Mamani JB, Nucci LP, Alvarim LT, Silveira PH, Marti LC, Gamarra LF

International Journal of Nanomedicine 2014, 9:337-350

Published Date: 8 January 2014

Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles

Zhao K, Zhang Y, Zhang XY, Li W, Shi C, Guo C, Dai CX, Chen Q, Jin Z, Zhao Y, Cui HY, Wang YF

International Journal of Nanomedicine 2014, 9:389-402

Published Date: 7 January 2014

Anti-obesity efficacy of nanoemulsion oleoresin capsicum in obese rats fed a high-fat diet

Kim JY, Lee MS, Jung S, Joo H, Kim CT, Kim IH, Seo S, Oh S, Kim Y

International Journal of Nanomedicine 2014, 9:301-310

Published Date: 3 January 2014

Development of high drug-loading nanomicelles targeting steroids to the brain

Zheng S, Xie Y, Li Y, Li L, Tian N, Zhu W, Yan G, Wu C, Hu H

International Journal of Nanomedicine 2014, 9:55-66

Published Date: 18 December 2013