Back to Browse Journals » Nature and Science of Sleep » Volume 4

Shift work: health, performance and safety problems, traditional countermeasures, and innovative management strategies to reduce circadian misalignment

Authors Smith MR, Eastman CI

Received 13 July 2012

Accepted for publication 21 August 2012

Published 27 September 2012 Volume 2012:4 Pages 111—132


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Mark R Smith, Charmane I Eastman

Biological Rhythms Research Laboratory, Rush University Medical Center, Chicago, IL, USA

Abstract: There are three mechanisms that may contribute to the health, performance, and safety problems associated with night-shift work: (1) circadian misalignment between the internal circadian clock and activities such as work, sleep, and eating, (2) chronic, partial sleep deprivation, and (3) melatonin suppression by light at night. The typical countermeasures, such as caffeine, naps, and melatonin (for its sleep-promoting effect), along with education about sleep and circadian rhythms, are the components of most fatigue risk-management plans. We contend that these, while better than nothing, are not enough because they do not address the underlying cause of the problems, which is circadian misalignment. We explain how to reset (phase-shift) the circadian clock to partially align with the night-work, day-sleep schedule, and thus reduce circadian misalignment while preserving sleep and functioning on days off. This involves controlling light and dark using outdoor light exposure, sunglasses, sleep in the dark, and a little bright light during night work. We present a diagram of a sleep-and-light schedule to reduce circadian misalignment in permanent night work, or a rotation between evenings and nights, and give practical advice on how to implement this type of plan.

Keywords: circadian rhythms, night work, bright light, phase-shifting, sleep, melatonin

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at:

Readers of this article also read:

Profile of efraloctocog alfa and its potential in the treatment of hemophilia A

George LA, Camire RM

Journal of Blood Medicine 2015, 6:131-141

Published Date: 24 April 2015

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Managing hemophilia: the role of mobile technology

Khair K, Holland M

Smart Homecare Technology and TeleHealth 2014, 2:39-44

Published Date: 6 May 2014

New developments in the management of congenital Factor XIII deficiency [Corrigendum]

Fadoo Z, Merchant Q, Rehman KA

Journal of Blood Medicine 2013, 4:87-88

Published Date: 23 July 2013

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Evidence supporting the use of recombinant activated factor VII in congenital bleeding disorders

Pär I Johansson, Sisse R Ostrowski

Drug Design, Development and Therapy 2010, 4:107-116

Published Date: 29 June 2010