Back to Journals » Diabetes, Metabolic Syndrome and Obesity » Volume 6

SGLT-2 inhibitors and their potential in the treatment of diabetes

Authors Rosenwasser RF, Sultan S, Sutton D, Choksi R, Epstein BJ

Received 5 April 2013

Accepted for publication 10 May 2013

Published 27 November 2013 Volume 2013:6 Pages 453—467

DOI https://doi.org/10.2147/DMSO.S34416

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 6



Rebecca F Rosenwasser,1 Senan Sultan,2 David Sutton,2 Rushab Choksi,1 Benjamin J Epstein3

1East Coast Institute for Research, Jacksonville, FL, USA; 2Northeast Florida Endocrine and Diabetes Associates, Jacksonville, FL, USA; 3Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA

Abstract: Diabetes remains a burgeoning global problem, necessitating ongoing efforts on the part of pharmaceutical and device manufacturers, patients, and society to curb the frightening trends in morbidity and mortality attributable to the malady. Since 1835 when phlorizin was discovered, sodium glucose co-transporter 2 (SGLT-2) inhibitors have rested tantalizingly on the horizon, promising a more physiological approach to glucose control. These agents lower glucose by enhancing its excretion by blocking reabsorption in the renal tubules, thus eliminating glucose from the body along with the molecules' attendant effects on caloric balance, plasma osmolality, and lipids. Consequently, SGLT-2 inhibitors improve glucose control to an extent comparable to other hypoglycemic agents while simultaneously reducing body weight, blood pressure, and cholesterol – an admirable portfolio. One agent, canagliflozin, has recently been approved by the US Food and Drug Administration (FDA) and two other agents have progressed through Phase III trials, including dapagliflozin and empagliflozin. Collectively, when used as monotherapy, these agents have demonstrated reductions in hemoglobin A1c (HbA1c), body weight, and blood pressure of –0.34% to –1.03%, –2.0 to -3.4 kg, and –1.7 to –6.4 mmHg/–0.3 to –2.6 mmHg (systolic blood pressure/diastolic blood pressure), respectively. SGLT-2 inhibitors have been well tolerated, with hypoglycemia (0.9% to 4.3%) occurring infrequently in clinical trials. Safety signals related to breast and bladder cancer have arisen with dapagliflozin, though these are unsubstantiated and likely ascribed to the presence of preexisting cancer. As these agents emerge, clinicians should embrace the addition to the formulary for treating type 2 diabetes, but must also weight the risk–benefit of this new class in deciding which patient types are most likely to benefit from their novel mechanism of action.

Keywords: diabetes, sodium–glucose transporter 2, canagliflozin, dapagliflozin, empagliflozin

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.