Back to Journals » International Journal of Nanomedicine » Volume 6

Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone

Authors Chen, Song S, Yan Z, Fenirri H, Webster T 

Published 18 May 2011 Volume 2011:6 Pages 1035—1044

DOI https://doi.org/10.2147/IJN.S18755

Review by Single anonymous peer review

Peer reviewer comments 2



Video abstract presented by Yupeng Chen

Views: 1749

Yupeng Chen1,2, Shang Song2, Zhimin Yan3, Hicham Fenniri3, Thomas J Webster2,4
1
Department of Chemistry, Brown University, Providence, RI, USA; 2School of Engineering, Brown University, Providence, RI, USA; 3National Institute for Nanotechnology and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; 4Department of Orthopedics, Brown University, Providence, RI, USA

Abstract: Rosette nanotubes (RNTs) are novel, self-assembled, biomimetic, synthetic drug delivery materials suitable for numerous medical applications. Because of their amphiphilic character and hollow architecture, RNTs can be used to encapsulate and deliver hydrophobic drugs otherwise difficult to deliver in biological systems. Another advantage of using RNTs for drug delivery is their biocompatibility, low cytotoxicity, and their ability to engender a favorable, biologically-inspired environment for cell adhesion and growth. In this study, a method to incorporate dexamethasone (DEX, an inflammatory and a bone growth promoting steroid) into RNTs was developed. The drug-loaded RNTs were characterized using diffusion ordered nuclear magnetic resonance spectroscopy (DOSY NMR) and UV-Vis spectroscopy. Results showed for the first time that DEX can be easily and quickly encapsulated into RNTs and released to promote osteoblast (bone-forming cell) functions over long periods of time. As a result, RNTs are presented as a novel material for the targeted delivery of hydrophobic drugs otherwise difficult to deliver.

Keywords: nanotubes, drug delivery, self-assembly, physiological conditions

Creative Commons License © 2011 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.