Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Self-assembled polymeric nanoparticles as new, smart contrast agents for cancer early detection using magnetic resonance imaging

Authors Mouffouk F, Simão T, Dornelle D, Lopes A, Sau P, Martins J, Abu-Salah K, Alrokayan SA, da Costa A, dos Santos N

Received 15 July 2014

Accepted for publication 22 September 2014

Published 17 December 2014 Volume 2015:10(1) Pages 63—76


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Thomas J Webster

Fouzi Mouffouk,1,* Teresa Simão,2,* Daniel F Dornelles,2 André D Lopes,3 Pablo Sau,4 Jorge Martins,2,5 Khalid M Abu-Salah,6 Salman A Alrokayan,6 Ana M Rosa da Costa,3 Nuno R dos Santos2

1Chemistry Department, Faculty of Science, Kuwait University, Safat, Kuwait; 2IBB – Institute for Biotechnology and Bioengineering, CBME – Centre for Molecular and Structural Biomedicine, 3CIQA-Algarve Chemistry Research Center, Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Faro, Portugal; 4Centro Radiológico Computarizado SA (CERCO), Seville, Spain; 5Department of Biological Sciences and Bioengineering, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Faro, Portugal; 6King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia

*These authors contributed equally to this work

Abstract: Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex (tBuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that tBuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35–40 nm) reveals their potential use for early cancer detection by MRI.

Keywords: micelle, pH-sensitive, self-assembly, smart contrast agent, cancer detection

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other article by this author:

New generation of electrochemical immunoassay based on polymeric nanoparticles for early detection of breast cancer

Mouffouk F, Aouabdi S, Al-Hetlani E, Serrai H, Alrefae T, Leo Chen L

International Journal of Nanomedicine 2017, 12:3037-3047

Published Date: 13 April 2017

Readers of this article also read:

Home-based pulmonary rehabilitation improves clinical features and systemic inflammation in chronic obstructive pulmonary disease patients

Nascimento ESP, Sampaio LMM, Peixoto-Souza FS, Dias FD, Gomes ELFD, Greiffo FR, Ligeiro de Oliveira AP, Stirbulov R, Vieira RP, Costa D

International Journal of Chronic Obstructive Pulmonary Disease 2015, 10:645-653

Published Date: 23 March 2015

Functional capacity, physical activity, and quality of life in hypoxemic patients with chronic obstructive pulmonary disease

Saglam M, Vardar-Yagli N, Savci S, Inal-Ince D, Calik-Kutukcu E, Arikan H, Coplu L

International Journal of Chronic Obstructive Pulmonary Disease 2015, 10:423-428

Published Date: 26 February 2015

Comorbidity and health-related quality of life in patients with severe chronic obstructive pulmonary disease attending Swedish secondary care units

Sundh J, Johansson G, Larsson K, Lindén A, Löfdahl CG, Janson C, Sandström T

International Journal of Chronic Obstructive Pulmonary Disease 2015, 10:173-183

Published Date: 22 January 2015

Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles

Seo Y, Hwang J, Kim J, Jeong Y, Hwang MP, Choi J

International Journal of Nanomedicine 2014, 9:4621-4629

Published Date: 30 September 2014

Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines

Mfouo-Tynga I, El-Hussein A, Abdel-Harith M, Abrahamse H

International Journal of Nanomedicine 2014, 9:3771-3780

Published Date: 8 August 2014

In situ precipitation: a novel approach for preparation of iron-oxide magnetoliposomes

Xia S, Li P, Chen Q, Armah M, Ying X, Wu J, Lai J

International Journal of Nanomedicine 2014, 9:2607-2617

Published Date: 23 May 2014

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010