Back to Browse Journals » Cancer Management and Research » Volume 5

Samarium-153-ethylene diamine tetramethylene phosphonate, a beta-emitting bone-targeted radiopharmaceutical, useful for patients with osteoblastic bone metastases

Authors Longo J, Lutz S, Johnstone C

Received 25 April 2013

Accepted for publication 1 July 2013

Published 13 August 2013 Volume 2013:5 Pages 235—242

DOI https://doi.org/10.2147/CMAR.S35789

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

John Longo,1 Stephen Lutz,2 Candice Johnstone1

1Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA; 2Department of Radiation Oncology, Blanchard Valley Regional Cancer Center, Findlay, OH, USA

Abstract: Bone metastases are prevalent among cancer patients and frequently cause significant morbidity. Oncology providers must mitigate complications associated with bone metastases while limiting therapy-related adverse effects and their impact on quality of life. Multiple treatment modalities, including chemotherapy, surgery, external beam radiation therapy, and radioisotopes, among others, have been recommended and utilized for palliative treatment of bone metastases. Radioisotopes such as samarium-153 are commonly used in the setting of multifocal bone metastases due to their systemic distribution, affinity for osteoblastic lesions, acceptable toxicity profile, and convenience of administration. This review focuses on samarium-153, first defining its radiobiologic and pharmacokinetic properties before describing many clinical trials that support its use as a safe and effective tool in the palliation of patients with bone metastases.

Keywords: bone metastases, pain, radiopharmaceuticals, pain flare

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Hematuria following Botox treatment for upper limb spasticity: a case report

Lo TC, Yeung ST, Lee S, Chang EY

Journal of Pain Research 2015, 8:619-622

Published Date: 14 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010