Back to Journals » Therapeutics and Clinical Risk Management » Volume 10

Safety and efficacy of acarbose in the treatment of diabetes in Chinese patients

Authors He K, Shi J, Mao X

Received 21 April 2014

Accepted for publication 4 June 2014

Published 30 June 2014 Volume 2014:10 Pages 505—511


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Video abstract presented by Xiao-Ming Mao

Views: 412

Ke He*, Jun-Cheng Shi*, Xiao-Ming Mao

Department of Endocrinology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China

*These authors contributed equally to this work

Abstract: Acarbose is an α-glucosidase inhibitor that is commonly used to control postprandial blood glucose. It functions as a competitive and reversible inhibitor of small intestinal brush border glucosidase, blocks the degradation of starch and sucrose, and delays the absorption of glucose and fructose in the alimentary tract. The starch content of a diet might alter the hypoglycemic effects of acarbose because of its mechanism of action. Chinese individuals consume a typical Eastern diet, which is characterized by a high intake of whole grains, legumes, vegetables, fruits, and fish. These dietary habits allow acarbose to be used extensively in the People's Republic of China. Several Chinese-based studies have demonstrated that the use of acarbose as a monotherapy had similar effects on other anti-diabetes agents in decreasing glycosylated hemoglobin (HbA1c) and blood glucose levels, and acarbose in combination with other anti-diabetic drugs could further reduce blood glucose and decrease the mean amplitude of glycemic excursions. Importantly, acarbose is safe and well tolerated, with a low incidence of adverse effects. This article provides a comprehensive review of the safety and efficacy of acarbose for the treatment of diabetes in Chinese patients.

Keywords: acarbose, α-glucosidase inhibitor, efficacy, safety

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010