Back to Journals » Therapeutics and Clinical Risk Management » Volume 6

Role of teriparatide in treatment of glucocorticoid-induced osteoporosis

Authors Lau A, Adachi R

Published 12 October 2010 Volume 2010:6 Pages 497—503


Review by Single-blind

Peer reviewer comments 2

Arthur N Lau, Jonathan D Adachi
Division of Rheumatology and Department of Medicine, St Joseph’s Healthcare and McMaster University, Hamilton, Ontario, Canada

Abstract: Glucocorticoids are commonly used in various fields within medicine. One of their most common and clinically significant side effects is glucocorticoid-induced osteoporosis (GIOP). GIOP is a disease leading to progressive decreases in bone mineral density, decreased bone strength, and increased risk of skeletal fractures. GIOP has a significant impact on the morbidity and health-related quality of life of the patients it affects. Glucocorticoids have deleterious effects on bone through promoting osteoblast apoptosis and inhibiting osteoblastogenesis. Teriparatide exerts anabolic effects on bone, so it is understandable why teriparatide is thought to be a rational treatment option. Clinical studies have indicated teriparatide is efficacious in the treatment of GIOP to improve bone mineral density values at the lumbar spine and femoral neck. Some evidence also suggests teriparatide may reduce rates of vertebral fractures in GIOP patients. Overall, this review of the current clinical evidence suggests teriparatide may be an efficacious and promising agent in the treatment of GIOP.

Keywords: glucocorticoid-induced osteoporosis, teriparatide, parathyroid hormone

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other article by this author:

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010