Back to Journals » Cancer Management and Research » Volume 11

Rhein shows potent efficacy against non-small-cell lung cancer through inhibiting the STAT3 pathway

Authors Yang L, Li J, Xu L, Lin S, Xiang Y, Dai X, Liang G, Huang XY, Zhu J, Zhao C

Received 18 April 2018

Accepted for publication 17 December 2018

Published 1 February 2019 Volume 2019:11 Pages 1167—1176

DOI https://doi.org/10.2147/CMAR.S171517

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Amy Norman

Peer reviewer comments 3

Editor who approved publication: Professor Nakshatri


Lehe Yang,1–3,* Jifa Li,1,* Lingyuan Xu,1–3,* Shichong Lin,1–3 Youqun Xiang,3 Xuanxuan Dai,3 Guang Liang,2 Xiaoying Huang,3 Jiandong Zhu,1 Chengguang Zhao1,2

1Department of Respiratory Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People’s Republic of China; 2Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People’s Republic of China; 3Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, People’s Republic of China

*These authors contributed equally to this work

Background: Non-small-cell lung cancer (NSCLC) comprises about 85% of all lung cancers and is usually diagnosed at an advanced stage with poor prognosis. The IL-6/STAT3 signaling pathway plays a pivotal role in NSCLC biology. Rhein is a lipophilic anthraquinone extensively found in medicinal herbs. Emerging evidence suggests that Rhein has significant antitumor effects, supporting the potential uses of Rhein as an antitumor agent.
Methods: Cell viability and colony formation were performed to examine Rhein’s potent antiproliferative effect in human NSCLC cell lines PC-9, H460 and A549. Flow cytometry-based assay was employed to study whether Rhein could affect cell apoptosis and cycle. The expression level of P-STAT3, apoptosis and cycle-related proteins Bcl-2, Bax, MDM2, CDC2, P53 and CyclinB1 were detected by Western blotting. The xenograft models were used to evaluate the in vivo effect of Rhein.
Results: We found that Rhein could significantly reduce the viability and stimulate apoptosis in human NSCLC cells in a dose-dependent manner. Western blot analysis results suggested that the antitumor effect of Rhein might be mediated via STAT3 inhibition. Rhein upregulated the expression of the proapoptotic protein Bax and downregulated the expression of the antiapoptotic protein Bcl-2. In addition, Rhein induced the arrest of NSCLC cells in the G2/M phase of the cell cycle and dose dependently inhibited the expression of cycle-related proteins. The Rhein also inhibited tumor growth in H460 xenograft models.
Conclusion: Rhein shows potent efficacy against NSCLC through inhibiting the STAT3 pathway. Our results also suggest that Rhein has a promising potential to be used as a novel antitumor agent for the treatment of NSCLC.

Keywords: Rhein, NSCLC, STAT3, EGFR, diacerein, apoptosis, inhibitor

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]