Back to Journals » Clinical Ophthalmology » Volume 6

Retinoblastoma treatment: impact of the glycolytic inhibitor 2-deoxy-d-glucose on molecular genomics expression in LHBETATAG retinal tumors

Authors Pina, Houston S, Murray T , Koru-Sengul, Decatur, Scott WK, Nathanson, Clarke, Lampidis

Received 4 January 2012

Accepted for publication 7 February 2012

Published 29 May 2012 Volume 2012:6 Pages 817—830

DOI https://doi.org/10.2147/OPTH.S29688

Review by Single anonymous peer review

Peer reviewer comments 4



Yolanda Piña,1 Samuel K Houston,1 Timothy G Murray,1 Tulay Koru-Sengul,2,3 Christina Decatur,1 William K Scott,4 Lubov Nathanson,4 Jennifer Clarke,2 Theodore J Lampidis,5
1Bascom Palmer Eye Institute, 2Department of Epidemiology and Public Health, 3Sylvester Comprehensive Cancer Center, 4Department of Molecular Genomics, 5Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL, USA

Purpose: The purpose of this study was to evaluate the effect of 2-deoxy-D-glucose (2-DG) on the spatial distribution of the genetic expression of key elements involved in angiogenesis, hypoxia, cellular metabolism, and apoptosis in LHBETATAG retinal tumors.
Methods: The right eye of each LHBETATAG transgenic mouse (n = 24) was treated with either two or six subconjunctival injections of 2-DG (500 mg/kg) or saline control at 16 weeks of age. A gene expression array analysis was performed on five different intratumoral regions (apex, center, base, anterior-lateral, and posterior-lateral) using Affymetrix GeneChip Mouse Gene 1.0 ST arrays. To test for treatment effects of each probe within each region, a two-way analysis of variance was used.
Results: Significant differences between treatment groups (ie, 0, 2, and 6 injections) were found as well as differences among the five retinal tumor regions evaluated (P < 0.01). More than 100 genes were observed to be dysregulated by ≥2-fold difference in expression between the three treatment groups, and their dysregulation varied across the five regions assayed. Several genes involved in pathways important for tumor cell growth (ie, angiogenesis, hypoxia, cellular metabolism, and apoptosis) were identified.
Conclusions: 2-DG was found to significantly alter the gene expression in LHBETATAG retinal tumor cells according to their location within the tumor as well as the treatment schedule. 2-DG's effects on genetic expression found here correlate with previous reported results on varied processes involved in its in vitro and in vivo activity in inhibiting tumor cell growth.

Keywords: retinoblastoma, hypoxia, genetic expression, glycolytic inhibitor, 2-DG

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.