Back to Journals » Eye and Brain » Volume 8

Retinal, visual, and refractive development in retinopathy of prematurity

Authors Moskowitz A, Hansen R, Fulton A

Received 1 September 2015

Accepted for publication 6 November 2015

Published 20 May 2016 Volume 2016:8 Pages 103—111

DOI https://doi.org/10.2147/EB.S95021

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Pachiappan Arjunan

Peer reviewer comments 2

Editor who approved publication: Professor Margaret Wong-Riley


Anne Moskowitz, Ronald M Hansen , Anne B Fulton

Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA

Abstract: The pivotal role of the neurosensory retina in retinopathy of prematurity (ROP) disease processes has been amply demonstrated in rat models. We have hypothesized that analogous cellular processes are operative in human ROP and have evaluated these presumptions in a series on non-invasive investigations of the photoreceptor and post-receptor peripheral and central retina in infants and children. Key results are slowed kinetics of phototransduction and deficits in photoreceptor sensitivity that persist years after ROP has completely resolved based on clinical criteria. On the other hand, deficits in post-receptor sensitivity are present in infancy regardless of the severity of the ROP but are not present in older children if the ROP was so mild that it never required treatment and resolved without a clinical trace. Accompanying the persistent deficits in photoreceptor sensitivity, there is increased receptive field size and thickening of the post-receptor retinal laminae in the peripheral retina of ROP subjects. In the late maturing central retina, which mediates visual acuity, attenuation of multifocal electroretinogram activity in the post-receptor retina led us to the discovery of a shallow foveal pit and significant thickening of the post-receptor retinal laminae in the macular region; this is most likely due to failure of the normal centrifugal movement of the post-receptor cells during foveal development. As for refractive development, myopia, at times high, is more common in ROP subjects than in control subjects, in accord with refractive findings in other populations of former preterms. This information about the neurosensory retina enhances understanding of vision in patients with a history of ROP, and taken as a whole, raises the possibility that the neurosensory retina is a target for therapeutic intervention.

Keywords: electroretinogram, psychophysics, retinal imaging, photoreceptors, neural retina, refraction

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]