Back to Journals » Biologics: Targets and Therapy » Volume 2 » Issue 3

Renal and vascular benefits of C-peptide: Molecular mechanisms of C-peptide action

Authors Nordquist L, Palm F, Andresen BT

Published 12 September 2008 Volume 2008:2(3) Pages 441—452

DOI https://doi.org/10.2147/BTT.S3221

Review by Single anonymous peer review

Peer reviewer comments 4



Lina Nordquist1, Fredrik Palm1,2, Bradley T Andresen3,4

1Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; 2Georgetown University Medical Center, Department of Medicine, Division of Nephrology and Hypertension, Georgetown University, Washington, DC, USA; 3University of Missouri, Department of Internal Medicine, Division of Endocrinology, HSC Diabetes Center, Columbia, MO, USA; 4Harry S Truman VA Medical Center, Columbia, MO, USA

Abstract: C-peptide has long been thought to be an inert byproduct of insulin production, but it has become apparent, and accepted, that C-peptide has important biological properties. C-peptide displays beneficial effects in many tissues affected by diabetic complications, such as increased peripheral blood flow and protection from renal damage. However, the mechanisms mediating these effects remain unclear. C-peptide interacts with cellular membranes at unidentified sites distinctive of the insulin family of receptors, and signals to multiple targets known to play a role in diabetes and diabetic complications, such as Na+/K+-ATPase and NOS. In general, the physiological and molecular effects of C-peptide resemble insulin, but C-peptide also possesses traits separate from those of insulin. These basic studies have been confirmed in human studies, suggesting that C-peptide may lend itself to clinical applications. However, the molecular and physiological properties of C-peptide are not completely elucidated, and large clinical studies have not begun. In order to further these goals, we critically summarize the current state of knowledge regarding C-peptide’s renal and vascular effects and the molecular signaling of C-peptide.

Keywords: C-peptide, insulin, diabetes mellitus, nephropathy, vascular, signaling

Creative Commons License © 2008 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.