Back to Journals » Clinical Interventions in Aging » Volume 16

Relationship Between Bioelectrical Impedance Parameters and Appendicular Muscle Functional Quality in Older Adults from South-Western Poland

Authors Kolodziej M, Ignasiak Z, Ignasiak T

Received 18 October 2020

Accepted for publication 22 December 2020

Published 5 February 2021 Volume 2021:16 Pages 245—255

DOI https://doi.org/10.2147/CIA.S287373

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Dr Richard Walker


Malgorzata Kolodziej,1 Zofia Ignasiak,1 Tomasz Ignasiak2

1Department of Biostructure, University School of Physical Education in Wroclaw, Wrocław, Poland; 2Department of Medical and Technical Sciences, Karkonosze State University of Applied Sciences, Jelenia Góra, Poland

Correspondence: Malgorzata Kolodziej
Department of Biostructure, University School of Physical Education in Wroclaw, Al. I. J. Paderewskiego 35, Wroclaw, 51-612, Poland
Tel +480713473367
Email malgorzata.kolodziej@awf.wroc.pl

Purpose: The aim of this research was to assess the correlations between the impedance components and the appendicular skeletal muscle strength and functional quality indices in older adults. The use of the impedance parameters as potential identifiers characterizing the functional state of muscles could improve methods of monitoring “healthy ageing”.
Patients and Methods: A total of 346 subjectively healthy adults aged 50– 83 years were subjected to tests. Body mass and height, hand grip strength and knee extensor strength were measured. Resistance, reactance and phase angle were measured using the bioelectrical impedance method. The relationship between the impedance parameters and the appendicular skeletal muscle strength and quality indices was evaluated using stepwise multiple regression.
Results: Participants aged ≥ 65 years were found to be characterized by lower values of the impedance parameters and the appendicular skeletal muscle strength and functional quality indices than participants 10 years younger. In both groups of sexes, the relative percentage differences in limb strength between the age groups were 3– 6 times greater than the differences in appendicular skeletal muscle mass. Significant regression models for muscle strength and quality, with strong age, sex and reactance prediction and a weaker phase angle effect, were obtained.
Conclusion: The impedance components explain the part of changes in muscle strength which is independent of the decline in skeletal muscle mass. Phase angle and reactance can be suitable for diagnosing and preventing dangers connected with the decline in muscle quality, but it is necessary to establish their normalized reference values for older adults.

Keywords: appendicular skeletal muscles, bioelectrical impedance analysis, muscle strength, muscle quality, healthy ageing

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]