Back to Browse Journals » Biologics: Targets and Therapy » Volume 7

Relapsed and refractory lymphoid neoplasms and multiple myeloma with a focus on carfilzomib

Authors Nooka A, Gleason C, Casbourne D, Lonial S

Received 3 April 2012

Accepted for publication 8 June 2012

Published 30 January 2013 Volume 2013:7 Pages 13—32

DOI https://doi.org/10.2147/BTT.S24580

Review by Single-blind

Peer reviewer comments 3

Ajay Nooka, Charise Gleason, Daniela Casbourne, Sagar Lonial

Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta GA, USA

Abstract: Proteasomal inhibition revolutionized myeloma therapies in this decade of novel agents. The only US Food and Drug Administration approved proteasome inhibitor so far, bortezomib effectively targets the constitutive proteasome subunit ß5 of the 26S proteasome. Bortezomib induces high and quality response rates that are durable. However, myeloma cells acquire resistance to bortezomib through various mechanisms. Further, grade 3/4 peripheral neuropathy is seen in up to a quarter of patients treated with bortezomib. While the recent change in the mode of administration via the subcutaneous route is associated with a lower incidence of grade 3/4 peripheral neuropathy, it remains a major concern. The second generation proteasome inhibitors are promising, with increased preclinical efficacy and a better administration schedule. The current review spotlights the second generation proteasome inhibitors with special focus on the safety and efficacy of carfilzomib, an epoxyketone with lesser peripheral neuropathy, which exhibits irreversible proteasome inhibition. In this article, we review the pharmacology and preclinical and clinical efficacy and safety of carfilzomib alone and in combination with other chemotherapeutic agents in the various lymphoid neoplasms and multiple myeloma as well as ongoing clinical trials.

Keywords: myeloma, carfilzomib, second generation, proteasome inhibitor, epoxyketone

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010