Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 12

Real-life feasibility and effectiveness of home-based pulmonary rehabilitation in chronic obstructive pulmonary disease requiring medical equipment

Authors Coquart JB, Le Rouzic O, Racil G, Wallaert B, Grosbois JM

Received 5 September 2017

Accepted for publication 17 October 2017

Published 12 December 2017 Volume 2017:12 Pages 3549—3556

DOI https://doi.org/10.2147/COPD.S150827

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Charles Downs

Peer reviewer comments 2

Editor who approved publication: Dr Richard Russell


Jérémy B Coquart,1 Olivier Le Rouzic,2 Ghazi Racil,3 Benoit Wallaert,2 Jean-Marie Grosbois4


1CETAPS, EA 3832, UFR STAPS, University of Rouen, Normandie-Univ, Mont Saint Aignan, France; 2Department of Respiratory Diseases, University of Lille, CHRU Lille, Lille, France; 3Department of Biology, Faculty of Sciences, El Manar University, Tunis, Tunisia; 4FormAction Santé, Pérenchies, France


Background: Pulmonary rehabilitation (PR) is a key treatment of chronic obstructive pulmonary disease (COPD) but studies are still needed to identify the most pertinent criteria to personalize this intervention and improve its efficacy.
Objective: This real-life retrospective study compared the effects of home-based PR on exercise tolerance, anxiety, depression, and health-related quality of life (HRQoL) in COPD patients, according to their medical equipment.
Methods: Exercise tolerance, anxiety, depression, and HRQoL were evaluated in 109 patients equipped with long-term oxygen therapy (LTOT), 84 patients with noninvasive ventilation (NIV), 25 patients with continuous positive airway pressure (CPAP), and 80 patients with no equipment (NE), before, just after, and 6 and 12 months after PR.
Results: At baseline, the body mass index in the CPAP and NIV groups was higher (p<0.05) than in the other two groups, and the forced expiratory volume in 1 second was lower in the LTOT and NIV groups (p<0.001). All parameters improved after PR in the four groups (p<0.05), but for exercise tolerance, only the 6-minute stepper test showed maintained improvement after 6 and 12 months, whereas the 10 times sit-to-stand and timed up-and-go tests were only improved just after PR. At every time point, exercise tolerance was lower in the LTOT group (p<0.05), with a similar trend in the NIV group.
Conclusion: Despite differences in the medical equipment to treat COPD, home-based PR showed comparable feasibility, safety, and efficacy in all equipment-based groups. Medical equipment should therefore not be a barrier to home-based PR.

Keywords: personalized medicine, noninvasive ventilation, long-term oxygen therapy, continuous positive airway pressure

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]