Back to Journals » Infection and Drug Resistance » Volume 13

Protective Efficacy of the OprF/OprI/PcrV Recombinant Chimeric Protein Against Pseudomonas aeruginosa in the Burned BALB/c Mouse Model

Authors Fakoor MH, Mousavi Gargari SL, Owlia P, Sabokbar A

Received 29 December 2019

Accepted for publication 11 May 2020

Published 9 June 2020 Volume 2020:13 Pages 1651—1661


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Joachim Wink

Mohammad Hadi Fakoor,1 Seyed Latif Mousavi Gargari,2 Parviz Owlia,3 Azar Sabokbar1

1Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran; 2Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran; 3Molecular Microbiology Research Center, Shahed University, Tehran, Iran

Correspondence: Seyed Latif Mousavi Gargari Tel +989123118510

Background: Pseudomonas aeruginosa infection is the major cause of death in burn patients. Thus, in this study, a chimeric vaccine harboring the OprF185– 350–OprI22– 83–PcrV was designed and expressed in Escherichia coli. The immunogenicity of the recombinant chimer, OprI, OprF, and PcrV was studied in a burned mouse model.
Methodology: Recombinant proteins including the proposed chimer, OprF, OprI, and PcrV were expressed in the E.coli. Mice were immunized with the purified recombinant proteins, and the antibody titre was estimated in the sera obtained from immunized mice. Immunized and control mice were challenged with 2, 5, and 10xLD50 of the P. aeruginosa strains (PAO1, PAK, and R5), and microbial counts were measured in the skin, liver, spleen, and kidney of the studied mice.
Results: Results showed that the antibody titre (total IgG) was significantly increased by injection of 10 μg of chimeric protein in the experimental groups compared to the control groups. The antibody survival titre was high until 235 days after administration of the second booster. The survival rate of the mice infected with 10xLD50 was significantly increased and the number of bacteria was reduced, especially in the internal organs (kidney, spleen, and liver) compared to the mice immunized with any of the OprF, OprI, and PcrV proteins alone.
Conclusion: The findings of our study revealed that the chimeric protein is a promising vaccine candidate for control of the P. aeruginosa infection.

Keywords: burned, chimeric protein, Pseudomonas aeruginosa, vaccine

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]