Back to Journals » International Journal of Nanomedicine » Volume 13

Propylthiouracil-coated biodegradable polymer inhibited neointimal formation and enhanced re-endothelialization after vascular injury

Authors Chang SH, Lee CH, Yeh YH, Liu SJ, Wang CJ, Hsu MY, Chen WJ

Received 4 July 2017

Accepted for publication 26 January 2018

Published 21 March 2018 Volume 2018:13 Pages 1761—1771


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Linlin Sun

Shang-Hung Chang,1 Cheng-Hung Lee,1 Yung-Hsin Yeh,1 Shih-Jung Liu,2 Chao-Jan Wang,3 Ming-Yi Hsu,3 Wei-Jan Chen1

1Cardiovascular Department, Chang Gung Memorial Hospital, Chang-Gung University College of Medicine, Tao-Yuan, Taiwan; 2Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan; 3Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan

Background: The drug-eluting stent is a standard approach for the treatment of coronary artery disease. Propylthiouracil (PTU), an antithyroid drug, has been proven to suppress neointimal formation after balloon injury.
Materials and methods: This study used a biodegradable polymer coating with PTU to test its effects on platelet function, re-endothelialization, and neointimal formation after vascular injury. Electrospinning was used to fabricate hybrid stents and generate PTU-loaded nanofibers.
Results: PTU-eluting stents maintained a stable release of PTU for 3 weeks. The PTU-coated stent markedly decreased the neointimal formation induced by vascular injury in the descending aorta of rabbits. Moreover, the PTU coating reduced platelet adhesion on the surface of the biodegradable membrane, which was reflected by the decreased expression of adhesion molecule in PTU-treated endothelial cells. The PTU coating enhanced re-endothelialization in injured aortas. In vitro, PTU exerted less suppressive effect on the proliferation and migration of endothelial cells than on those of vascular smooth muscle cells. Furthermore, treatment of endothelial cells with PTU induced phosphorylation (Ser1177) of endothelial nitric oxide synthase as well as its association with heat shock protein 90, supporting the protective role of PTU in endothelial function. The level of thyroid-stimulating hormone remained unchanged during the experimental period.
Conclusion: This study indicates that PTU can be released locally and steadily in injured aortas, with some local effects but without systemic effects. Furthermore, PTU-coated stents may have beneficial effects on neointimal formation, endothelial cell, and platelet functions.

Keywords: drug-eluting stent, propylthiouracil, neointimal formation, endothelial cell, platelet

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]