Back to Journals » International Journal of Nanomedicine » Volume 11

Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3

Authors Tsai Y, Chen B

Received 6 January 2016

Accepted for publication 14 March 2016

Published 6 May 2016 Volume 2016:11 Pages 1907—1926


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Lei Yang

Yin-Jieh Tsai, Bing-Huei Chen

Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China

Abstract: Green tea is one of the most commonly consumed natural health beverages in Taiwan’s market, with the major functional component catechin being shown to possess several biological activities such as antioxidation, anticancer, and prevention of cardiovascular disease. The objectives of this study were to develop a high-performance liquid chromatography–mass spectrometry method to determine the variety and content of catechins in green tea leaf waste, a by-product obtained during processing of tea beverage. In addition, catechin nanoemulsion was prepared to study its inhibition effect on prostate cancer cell PC-3. Results showed that a total of eight catechin standards were separated within 25 minutes by using a Gemini C18 column and a gradient mobile phase of 0.1% formic acid (A) and acetonitrile (B) with flow rate at 1 mL/min, column temperature at 30°C, and detection wavelength at 280 nm. Among various extraction solvents, 50% ethanol generated the highest yield of total catechins from tea leaf waste, of which five catechins were identified and quantified. The catechin nanoemulsion was composed of catechin extract, lecithin, Tween 80, and deionized water in an appropriate proportion, with the mean particle size being 11.45 nm, encapsulation efficiency 88.1%, and zeta potential -66.3 mV. A high stability of catechin nanoemulsion was shown over a storage period of 120 days at 4°C. Both catechin extract and nanoemulsion could inhibit growth of PC-3 tumor cells, with the half maximal inhibitory concentration being 15.4 µg/mL and 8.5 µg/mL, respectively. The PC-3 cell cycle was arrested at S phase through elevation of P27 expression and decline of cyclin A, cyclin B, cyclin-dependent kinase 2, and cyclin-dependent kinase 1 expression. In addition, both catechin extract and nanoemulsion could induce apoptosis of PC-3 cells through decrease in B-cell lymphoma 2 (bcl-2) expression and increase in cytochrome c expression for activation of caspase-3, caspase-8, and caspase-9. Taken together, both caspase-dependent and caspase-independent pathways may be involved in apoptosis of PC-3 cells.

Keywords: green tea leaf waste, HPLC-MS, catechin nanoemulsion, prostate cancer cell PC-3, apoptosis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]