Back to Journals » International Journal of Nanomedicine » Volume 14

Preparation of AS1411 Aptamer Modified Mn-MoS2 QDs for Targeted MR Imaging and Fluorescence Labelling of Renal Cell Carcinoma

Authors Zheng S, Zhang M, Bai H, He M, Dong L, Cai L, Zhao M, Wang Q, Xu K, Li J

Received 15 May 2019

Accepted for publication 25 November 2019

Published 2 December 2019 Volume 2019:14 Pages 9513—9524

DOI https://doi.org/10.2147/IJN.S215883

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Alexander Kharlamov

Peer reviewer comments 2

Editor who approved publication: Dr Lei Yang


Shaohui Zheng,1–3,* Min Zhang,2,* Hongyan Bai,2 Meijuan He,2 Lina Dong,2 Lulu Cai,2 Mingming Zhao,2 Qi Wang,2 Kai Xu,1–3 Jingjing Li1–3

1Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, People’s Republic of China; 2School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, People’s Republic of China; 3Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People’s Republic of China

*These authors contributed equally to this work

Correspondence: Jingjing Li; Kai Xu Email qingchao0124@163.com; xkpaper@163.com

Background: Early diagnosis of renal cell carcinoma is extremely significant for the effective treatment of kidney cancer. The development of AS1411 aptamer modified Mn-MoS2 QDs provides a promising fluorescence/magnetic resonance (MR) dual-modal imaging probe for the precise diagnosis of renal clear cell carcinoma.
Methods: In this work, Mn-MoS2 QDs were synthesized through a simple “bottom-up” one-step hydrothermal method. AS1411 aptamer was modified on the Mn-MoS2 QDs to improve the specificity to renal cell carcinoma. The characteristics of Mn-MoS2 QDs were confirmed by transmission electronic microscopy (TEM), atomic force microscope (AFM), X-ray photoelectron spectrometer (XPS), photoluminescence (PL) emission spectra, etc. Cellular fluorescence labelling was investigated using the Mn-MoS2 QDs and AS1411-Mn-MoS2 QDs. The T1-weighted MR imaging was assessed by the in vitro MR cell imaging and in vivo MR imaging. Finally, the long-term toxicity of Mn-MoS2 QDs was investigated by the hematology and histological analysis.
Results: The prepared Mn-MoS2 QDs exhibited excellent aqueous property, intense fluorescence, low toxicity, high quantum yield of 41.45% and high T1 relaxivity of 16.95 mM−1s−1. After conjugated with AS1411 aptamer, the AS1411-Mn-MoS2 QDs could specifically fluorescently label the renal carcinoma cells and present a specific MRI signal enhancement in the tumor region of mice bearing renal carcinoma tumors. Furthermore, Mn-MoS2 QDs revealed low toxicity to the mice via hematology and histological analysis.
Conclusion: These results demonstrated the potential of AS1411-Mn-MoS2 QD as a novel nanoprobe for targeted MR imaging and fluorescence labelling of renal cell carcinoma.

Keywords: manganese-doped molybdenum disulfide quantum dots, renal cell carcinoma, magnetic resonance imaging, cell fluorescence labelling

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]