Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery

Authors Zu Y, Meng L, Zhao X, Ge Y, Yu X, Zhang Y, Deng Y

Received 2 January 2013

Accepted for publication 29 January 2013

Published 27 March 2013 Volume 2013:8(1) Pages 1207—1222

DOI https://doi.org/10.2147/IJN.S40493

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Yuangang Zu, Li Meng, Xiuhua Zhao, Yunlong Ge, Xinyang Yu, Yin Zhang, Yiping Deng

Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, People’s Republic of China

Introduction: The livertaxis of glycyrrhizic acid-conjugated bovine serum albumin (GL-BSA) has been reported in the literature. Now, in this paper, we describe a novel type of drug-targeted delivery system containing 10-hydroxycamptothecin (HCPT) with liver tumor targeting.
Methods: First, GL was coupled to BSA then HCPT was encapsulated in GL-BSA by high-pressure homogenization emulsification. In the experimental design, the influencing variables on particle size and drug loading efficiency were determined to be BSA concentration, volume ratio of water to organic phase, and speed and speed duration of homogenization as well as homogenization pressure and the number of times homogenized at certain pressures. Particle size plays an important role in screening optimal conditions of nanoparticles preparation. Characteristics of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles (GL-BSA-HCPT-NPs), such as the drug encapsulation efficiency, drug loading efficiency, and GL-BSA content were studied. In addition, the morphology of the nanoparticles (NPs) and weight loss rate were determined and Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, and thermal analysis performed.
Results: The average particle size of the sample NPs prepared under optimal conditions was 157.5 nm and the zeta potential was −22.51 ± 0.78 mV; the drug encapsulation efficiency and drug loading efficiency were 93.7% and 10.9%, respectively. The amount of GL coupling to BSA was 98.26 µg/mg. Through physical property study of the samples, we determined that the HCPT had been successfully wrapped in GL-BSA. In vitro drug-release study showed that the nanoparticles could release the drug slowly and continuously. Hemolysis testing showed the safety of GL-BSA as a novel drug delivery system. The targeting properties of GL-BSA-HCPT-NPs were studied in an in vitro cell uptake study and cell proliferation assay. Cells incubated with GL-BSA-HCPT-NPs and labeled with fluorescein isothiocyanate showed more extensive fluorescence spots and stronger fluorescence intensity than samples without GL conjugation. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to determine the inhibitory rate of the samples. It was found that the inhibitory rate of GL-BSA-HCPT-NPs develops as concentration rises. Further, the inhibitory rate of GL-BSA-HCPT-NPs was higher at the same concentration and had a lower half maximal inhibitory concentration value than the other samples. The half maximal inhibitory concentration values of GL-BSA-HCPT-NPs, BSA-HCPT-NPs, and HCPT sodium were 0.78 ± 0.015, 1.62 ± 0.039, and 7.93 ± 0.255 µg/mL, respectively.
Conclusion: The results of this study show GL-BSA-HCPT to be a promising new vehicle for hepatocellular carcinoma-targeting therapy.

Keywords: HCPT, BSA, GL, high-pressure homogenization emulsification

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Servant leadership: a case study of a Canadian health care innovator

Vanderpyl TH

Journal of Healthcare Leadership 2012, 4:9-16

Published Date: 16 February 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010