Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Preparation and controlled-release studies of a protocatechuic acid-magnesium/aluminum-layered double hydroxide nanocomposite

Authors Barahuie F, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S, Zainal Z

Received 13 January 2013

Accepted for publication 7 March 2013

Published 20 May 2013 Volume 2013:8(1) Pages 1975—1987

DOI https://doi.org/10.2147/IJN.S42718

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Farahnaz Barahuie,1 Mohd Zobir Hussein,1 Samer Hasan Hussein-Al-Ali,2 Palanisamy Arulselvan,3 Sharida Fakurazi,3,4 Zulkarnain Zainal1

1Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), 2Laboratory of Molecular Biomedicine, Institute of Bioscience, 3Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, 4Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia

Abstract: In the study reported here, magnesium/aluminum (Mg/Al)-layered double hydroxide (LDH) was intercalated with an anticancer drug, protocatechuic acid, using ion-exchange and direct coprecipitation methods, with the resultant products labeled according to the method used to produce them: “PANE” (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the ion-exchange method) and “PAND” (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the direct method), respectively. Powder X-ray diffraction and Fourier transform infrared spectroscopy confirmed the intercalation of protocatechuic acid into the inter-galleries of Mg/Al-LDH. The protocatechuic acid between the interlayers of PANE and PAND was found to be a monolayer, with an angle from the z-axis of 8° for PANE and 15° for PAND. Thermogravimetric and differential thermogravimetric analysis results revealed that the thermal stability of protocatechuic acid was markedly enhanced upon intercalation. The loading of protocatechuic acid in PANE and PAND was estimated to be about 24.5% and 27.5% (w/w), respectively. The in vitro release study of protocatechuic acid from PANE and PAND in phosphate-buffered saline at pH 7.4, 5.3, and 4.8 revealed that the nanocomposites had a sustained release property. After 72 hours incubation of PANE and PAND with MCF-7 human breast cancer and HeLa human cervical cancer cell lines, it was found that the nanocomposites had suppressed the growth of these cancer cells, with a half maximal inhibitory concentration of 35.6 µg/mL for PANE and 36.0 µg/mL for PAND for MCF-7 cells, and 19.8 µg/mL for PANE and 30.3 µg/mL for PAND for HeLa cells. No half maximal inhibitory concentration for either nanocomposite was found for 3T3 cells.

Keywords: Mg/Al-LDH, direct coprecipitation method, ion-exchange method, MCF-7, HeLa, 3T3

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Anticancer nanodelivery system with controlled release property based on protocatechuate–zinc layered hydroxide nanohybrid

Barahuie F, Hussein MZ, Abd Gani S, Fakurazi S, Zainal Z

International Journal of Nanomedicine 2014, 9:3137-3149

Published Date: 26 June 2014

Readers of this article also read:

Polymeric nanoparticles enhance the sonodynamic activity of meso-tetrakis (4-sulfonatophenyl) porphyrin in an in vitro neuroblastoma model

Canaparo R, Varchi G, Ballestri M, Foglietta F, Sotgiu G, Guerrini A, Francovich A, Civera P, Frairia R, Serpe L

International Journal of Nanomedicine 2013, 8:4247-4263

Published Date: 6 November 2013

A peptide-mediated targeting gene delivery system for malignant glioma cells

Wang C, Ning L, Wang H, Lu Z, Li X, Fan X, Wang X, Liu Y

International Journal of Nanomedicine 2013, 8:3631-3640

Published Date: 24 September 2013

Design of indomethacin-loaded nanoparticles: effect of polymer matrix and surfactant

Dupeyrón D, Kawakami M, Ferreira AM, Cáceres-Vélez PR, Rieumont J, Azevedo RB, Carvalho JCT

International Journal of Nanomedicine 2013, 8:3467-3477

Published Date: 13 September 2013

Barium titanate core – gold shell nanoparticles for hyperthermia treatments

FarrokhTakin E, Ciofani G, Puleo GL, de Vito G, Filippeschi C, Mazzolai B, Piazza V, Mattoli V

International Journal of Nanomedicine 2013, 8:2319-2331

Published Date: 28 June 2013

Enhanced in vivo osteogenesis by nanocarrier-fused bone morphogenetic protein-4

Shiozaki Y, Kitajima T, Mazaki T, Yoshida A, Tanaka M, Umezawa A, Nakamura M, Yoshida Y, Ito Y, Ozaki T, Matsukawa A

International Journal of Nanomedicine 2013, 8:1349-1360

Published Date: 9 April 2013

Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

Chen DZ, Tang QS, Li XD, Zhou XJ, Zang J, Xue WQ, Xiang JY, Guo CQ

International Journal of Nanomedicine 2012, 7:4973-4982

Published Date: 14 September 2012