Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Preparation and characteristics of lipid nanoemulsion formulations loaded with doxorubicin

Authors Jiang S, He S, Li Y, Feng D, Lu X, Du Y, Yu H, Hu F, Yuan H

Received 6 May 2013

Accepted for publication 16 July 2013

Published 19 August 2013 Volume 2013:8(1) Pages 3141—3150


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Sai-Ping Jiang,1,2,* Sai-Nan He,3,* Yun-Long Li,2,3 Da-Lin Feng,2 Xiao-Yang Lu,1 Yong-Zhong Du,2 He-Yong Yu,3 Fu-Qiang Hu,2 Hong Yuan2

1Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 2College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 3Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China

*These authors contributed equally to this work

Purpose: Safe and effective lipid nanoemulsion (LNE) formulations for the antitumor delivery of doxorubicin is designed.
Methods: LNEs composed of medium-chain triglyceride, soybean oil, lecithin, and doxorubicin are prepared by a solvent-diffusion method in an aqueous system. The effects of lipid material composition and polyethylene glycol (PEG)ylation on the size, drug encapsulation efficiency, and stability of LNEs are investigated. Based on in-vitro cytotoxicity and cellular uptake tests of A549 (human lung carcinoma) cells, in-vivo biodistribution, antitumor activity, and cardiac toxicity are further examined using nude mouse bearing A549 tumor.
Results: The LNE size decreases from 126.4 ± 8.7 nm to 44.5 ± 9.3 nm with increased weight ratio of medium-chain triglyceride to soybean oil from 1:4 to 3:2, whereas the encapsulation efficiency of doxorubicin is slightly reduced from 79.2% ± 2.1% to 71.2% ± 2.9%. The PEGylation of LNE by 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(PEG)2000] (DSPE-PEG 2000) does not significantly change the size and drug encapsulation efficiency. Three-month storage at room temperature and lyophilization process does not affect the drug encapsulation efficiency, whereas the size slightly increases to almost 100 nm. The in-vitro drug-release profiles of LNEs suggest that the present formulation can prolong drug release for 48 hours. LNEs can be internalized into tumor cells in vitro and efficiently accumulate in tumor tissues in vivo by passive targeting. Analysis results of in-vitro and in-vivo antitumor activities reveal that doxorubicin-loaded LNE exerts a therapeutic effect similar to that of the commercial Adriamycin. Moreover, the toxicity of doxorubicin, particularly its cardiac toxicity, is reduced.
Conclusion: The present LNE formulation of doxorubicin can effectively suppress tumor growth and improve the safety of Adriamycin.

Keywords: PEGylation, stability, antitumor activity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other articles by this author:

Specific targeting of A54 homing peptide-functionalized dextran-g-poly(lactic-co-glycolic acid) micelles to tumor cells

Situ JQ, Ye YQ, Zhu XL, Yu RS, You J, Yuan H, Hu FQ, Du YZ

International Journal of Nanomedicine 2015, 10:665-675

Published Date: 17 January 2015

Actively-targeted LTVSPWY peptide-modified magnetic nanoparticles for tumor imaging

Jie L-Y, Cai L-L, Wang L-J, Ying X-Y, Yu R-S, Zhang M-M,Du Y-Z

International Journal of Nanomedicine 2012, 7:3981-3989

Published Date: 24 July 2012

RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells

Cai LL, Liu P, Li X, Huang X, Ye YQ, Chen FY, Yuan H, Hu FQ, Du YZ

International Journal of Nanomedicine 2011, 6:3499-3508

Published Date: 21 December 2011

Receptor-mediated gene delivery by folic acid-modified stearic acid-grafted chitosan micelles

Du Y, Cai L, Li J, Zhao M, Chen F, Yuan H, Hu F

International Journal of Nanomedicine 2011, 6:1559-1568

Published Date: 1 August 2011

Readers of this article also read:

Molecular targets in arthritis and recent trends in nanotherapy

Roy K, Kanwar RK, Kanwar JR

International Journal of Nanomedicine 2015, 10:5407-5420

Published Date: 26 August 2015

Comparative efficacy and safety of local and systemic methotrexate injection in cesarean scar pregnancy

Peng P, Gui T, Liu X, Chen W, Liu Z

Therapeutics and Clinical Risk Management 2015, 11:137-142

Published Date: 27 January 2015

Is increasing the dose of Entecavir effective in partial virological responders?

Erturk A, Adnan Akdogan R, Parlak E, Cure E, Cumhur Cure M, Ozturk C

Drug Design, Development and Therapy 2014, 8:621-625

Published Date: 29 May 2014

Vincristine sulfate liposomal injection for acute lymphoblastic leukemia

Soosay Raj TA, Smith AM, Moore AS

International Journal of Nanomedicine 2013, 8:4361-4369

Published Date: 6 November 2013

Photodynamic therapy of a 2-methoxyestradiol tumor-targeting drug delivery system mediated by Asn-Gly-Arg in breast cancer

Shi J, Wang Z, Wang L, Wang H, Li L, Yu X, Zhang J, Ma R, Zhang Z

International Journal of Nanomedicine 2013, 8:1551-1562

Published Date: 19 April 2013

Controlled-release approaches towards the chemotherapy of tuberculosis

Saifullah B, Hussein MZ, Hussein Al Ali SH

International Journal of Nanomedicine 2012, 7:5451-5463

Published Date: 12 October 2012