Back to Journals » International Journal of Nanomedicine » Volume 6

Preliminary biocompatibility investigation of magnetic albumin nanosphere designed as a potential versatile drug delivery system

Authors Estevanato, Cintra, Baldini, Portilho, Barbosa, Martins, Lacava, Miranda-Vilela AL, Tedesco A , Ba¡o, Morais, Lacava Z 

Published 18 August 2011 Volume 2011:6 Pages 1709—1717

DOI https://doi.org/10.2147/IJN.S21323

Review by Single anonymous peer review

Peer reviewer comments 3



Luciana Estevanato1, Débora Cintra1, Nayara Baldini1, Flávia Portilho1, Luzirlane Barbosa1, Olímpia Martins2, Bruno Lacava3, Ana Luisa Miranda-Vilela1, Antônio Cláudio Tedesco2, Sônia Báo1, Paulo C Morais4, Zulmira GM Lacava1
1Instituto de Ciências Biológicas, Universidade de Brasília, 2Departamento de Química, Laboratório de Fotobiologia e Fotomedicina, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 3Instituto de Química, Universidade de Brasília, Brasília, 4Instituto de Física, Universidade de Brasília, Brasília, Brazil

Background: The magnetic albumin nanosphere (MAN), encapsulating maghemite nanoparticles, was designed as a magnetic drug delivery system (MDDS) able to perform a variety of biomedical applications. It is noteworthy that MAN was efficient in treating Ehrlich's tumors by the magnetohyperthermia procedure.
Methods and materials: In this study, several nanotoxicity tests were systematically carried out in mice from 30 minutes until 30 days after MAN injection to investigate their biocompatibility status. Cytometry analysis, viability tests, micronucleus assay, and histological analysis were performed.
Results: Cytometry analysis and viability tests revealed MAN promotes only slight and temporary alterations in the frequency of both leukocyte populations and viable peritoneal cells, respectively. Micronucleus assay showed absolutely no genotoxicity or cytotoxicity effects and histological analysis showed no alterations or even nanoparticle clusters in several investigated organs but, interestingly, revealed the presence of MAN clusters in the central nervous system (CNS).
Conclusion: The results showed that MAN has desirable in vivo biocompatibility, presenting potential for use as a MDDS, especially in CNS disease therapy.

Keywords: nanotoxicity, nanoparticle, genotoxicity, cytotoxicity, brain

Creative Commons License © 2011 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.