Back to Journals » International Journal of Nephrology and Renovascular Disease » Volume 2 » Default

Potential renovascular hypertension, space missions, and the role of magnesium

Authors Rowe W

Published 19 November 2009 Volume 2009:2 Pages 51—57

DOI https://doi.org/10.2147/IJNRD.S8249

Review by Single anonymous peer review

Peer reviewer comments 2



William J Rowe

Former Assistant Clinical Professor of Medicine, Medical University of Ohio at Toledo, Keswick, VA, USA

Abstract: Space flight (SF) and dust inhalation in habitats cause hypertension whereas in SF (alone) there is no consistent hypertension but reduced diurnal blood pressure (BP) variation instead. Current pharmaceutical subcutaneous delivery systems are inadequate and there is impairment in the absorption, metabolism, excretion, and deterioration of some pharmaceuticals. Data obtained from the National Aeronautics and Space Administration through the Freedom of Information Act shows that Irwin returned from his 12-day Apollo 15 mission in 1971 and was administered a bicycle stress test. With just three minutes of exercise, his BP was >275/125 mm Hg (heart rate of only 130 beats per minute). There was no acute renal insult. Irwin’s apparent spontaneous remission is suggested to be related to the increase of a protective vasodilator, and his atrial natriuretic peptide (ANP) reduced with SF because of reduced plasma volume. With invariable malabsorption and loss of bone/muscle storage sites, there are significant (P < 0.0001) reductions of magnesium (Mg) required for ANP synthesis and release. Reductions of Mg and ANP can trigger pronounced angiotensin (200%), endothelin, and catecholamine elevations (clearly shown in recent years) and vicious cycles between the latter and Mg deficits. There is proteinuria, elevated creatinine, and reduced renal concentrating ability with the potential for progressive inflammatory and oxidative stress-induced renal disease and hypertension with vicious cycles. After SF, animals show myocardial endothelial injuries and increased vascular resistance of extremities in humans. Even without dust, hypertension might eventually develop from renovascular hypertension during very long missions. Without sufficient endothelial protection from pharmaceuticals, a comprehensive gene research program should begin now.

Keywords: magnesium, atrial natriuretic peptide, dust, renovascular hypertension, microgravity

Creative Commons License © 2009 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.