Back to Journals » International Journal of Nanomedicine » Volume 13

Porous Se@SiO2 nanocomposites protect the femoral head from methylprednisolone-induced osteonecrosis

Authors Deng G, Dai C, Chen J, Ji A, Zhao J, Zhai Y, Kang Y, Liu X, Wang Y, Wang Q

Received 13 December 2017

Accepted for publication 17 February 2018

Published 22 March 2018 Volume 2018:13 Pages 1809—1818


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Linlin Sun

Guoying Deng1,*, Chenyun Dai2,*, Jinyuan Chen1, Anqi Ji1, Jingpeng Zhao1, Yue Zhai1, Yingjie Kang3, Xijian Liu4, Yin Wang5, Qiugen Wang1

1Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; 2Institute of Translation Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; 3Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; 4College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China; 5Ultrasound Department of Shanghai Pulmonary Hospital, Tongji University, Shanghai, China

*These authors contributed equally to this work

Background: Methylprednisolone (MPS) is an important drug used in therapy of many diseases. However, osteonecrosis of the femoral head is a serious damage in the MPS treatment. Thus, it is imperative to develop new drugs to prevent the serious side effect of MPS.
Methods: The potential interferences Se@SiO2 nanocomposites may have to the therapeutic effect of methylprednisolone (MPS) were evaluated by classical therapeutic effect index of acute respiratory distress syndrome (ARDS), such as wet-to-dry weight ratio, inflammatory factors IL-1β and TNF-α. And oxidative stress species (ROS) index like superoxide dismutase (SOD) and glutathione (GSH) were tested. Then, the protection effects of Se@SiO2 have in osteonecrosis of the femoral head (ONFH) were evaluated by micro CT, histologic analysis and Western-blot analysis.
Results: In the present study, we found that in the rat model of ARDS, Se@SiO2 nanocomposites induced SOD and GSH indirectly to reduce ROS damage. The wet-to-dry weight ratio of lung was significantly decreased after MPS treatment compared with the control group, whereas the Se@SiO2 did not affect the reduced wet-to-dry weight ratio of MPS. Se@SiO2 also did not impair the effect of MPS on the reduction of inflammatory factors IL-1β and TNF-α, and on the alleviation of structural destruction. Furthermore, micro CT and histologic analysis confirmed that Se@SiO2 significantly alleviate MPS-induced destruction of femoral head. Moreover, compared with MPS group, Se@SiO2 could increase collagen II and aggrecan, and reduce the IL-1β level in the cartilage of femoral head. In addition, the biosafety of Se@SiO2 in vitro and in vivo were supported by cell proliferation assay and histologic analysis of main organs from rat models.
Conclusion: Se@SiO2 nanocomposites have a protective effect in MPS-induced ONFH without influence on the therapeutic activity of MPS, suggesting the potential as effective drugs to avoid ONFH in MPS therapy.

Keywords: porous Se@SiO2 nanocomposites, methylprednisolone, osteonecrosis of femoral head, ROS damage, ARDS

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]