Back to Journals » International Journal of Nanomedicine » Volume 7

Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer

Authors Saxena V, Hussain MD

Received 1 December 2011

Accepted for publication 15 December 2011

Published 10 February 2012 Volume 2012:7 Pages 713—721


Review by Single-blind

Peer reviewer comments 3

Vipin Saxena, M Delwar Hussain

Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX, USA

Background: Delivery of a high concentration of anticancer drugs specifically to cancer cells remains the biggest challenge for the treatment of multidrug-resistant cancer. Poloxamers and D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) are known inhibitors of P-glycoprotein (P-gp). Mixed micelles prepared from Poloxamer 407 and TPGS may increase the therapeutic efficacy of the drug by delivering high concentrations inside the cells and inhibiting P-gp. Gambogic acid (GA) is a naturally derived novel anticancer agent, but poor solubility and toxic side effects limit its use. In this study, we have developed Poloxamer 407 and TPGS mixed micelle-encapsulating GA for the treatment of breast and multidrug-resistant cancer.
Methods: GA-loaded Poloxamer 407/TPGS mixed micelles were prepared using a thin film hydration method, and their physicochemical properties were characterized. Cellular accumulation and cytotoxicity of the GA-loaded Poloxamer 407/TPGS mixed micelles were studied in breast cancer cells, MCF-7 cells, and multidrug-resistant NCI/ADR-RES cells.
Results: The diameter of GA-loaded Poloxamer 407/TPGS mixed micelles was about 17.4 ± 0.5 nm and the zeta potential -13.57 mV. The entrapment efficiency of GA was 93.1% ± 0.5% and drug loading was about 9.38% ± 0.29%. Differential scanning calorimetry and X-ray powder diffraction studies confirmed that GA is encapsulated by the polymers. The in vitro release studies showed that mixed micelles sustained the release of GA for more than 4 days. Results from cellular uptake studies indicated that GA-loaded Poloxamer 407/TPGS mixed micelles had increased cellular uptake of GA in NCI/ADR-RES cells. Cytotoxicity of GA-loaded Poloxamer 407/TPGS mixed micelles was found to be 2.9 times higher in multidrug-resistant NCI/ADR-RES cells, and 1.6 times higher in MCF-7 cells, as compared with unencapsulated GA.
Conclusion: This study suggests that Poloxamer 407/TPGS mixed micelles can be used as a delivery system for GA to treat breast and multidrug-resistant cancer.

Keywords: gambogic acid, Poloxamer 407, TPGS, P-glycoprotein, multidrug resistance, breast cancer

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Role of apolipoprotein E in neurodegenerative diseases

Giau VV, Bagyinszky E, An SS, Kim SY

Neuropsychiatric Disease and Treatment 2015, 11:1723-1737

Published Date: 16 July 2015

Red cell distribution width and neurological scoring systems in acute stroke patients

Kara H, Degirmenci S, Bayir A, Ak A, Akinci M, Dogru A, Akyurek F, Kayis SA

Neuropsychiatric Disease and Treatment 2015, 11:733-739

Published Date: 18 March 2015

Cytotoxic effects of curcumin in osteosarcoma cells

Moran JM, Rodriguez-Velasco FJ, Roncero-Martin R, Vera V, Pedrera-Zamorano JD

International Journal of Nanomedicine 2014, 9:5273-5275

Published Date: 14 November 2014

Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

Nocerino N, Fulgione A, Iannaccone M, Tomasetta L, Ianniello F, Martora F, Lelli M, Roveri N, Capuano F, Capparelli R

International Journal of Nanomedicine 2014, 9:1175-1184

Published Date: 5 March 2014

Targeted dual-color silica nanoparticles provide univocal identification of micrometastases in preclinical models of colorectal cancer

Soster M, Juris R, Bonacchi S, Genovese D, Montalti M, Rampazzo E, Zaccheroni N, Garagnani P, Bussolino F, Prodi L, Marchiò S

International Journal of Nanomedicine 2012, 7:4797-4807

Published Date: 5 September 2012

Comparing the effects of nano-sized sugarcane fiber with cellulose and psyllium on hepatic cellular signaling in mice

Wang ZQ, Yu Y, Zhang XH, Floyd ZE, Boudreau A, Lian K, Cefalu WT

International Journal of Nanomedicine 2012, 7:2999-3012

Published Date: 18 June 2012

The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation

Santos-Martinez MJ, Inkielewicz-Stepniak I, Medina C, Rahme K, D'Arcy DM, Fox D, Holmes JD, Zhang H, Radomski MW

International Journal of Nanomedicine 2012, 7:243-255

Published Date: 13 January 2012

Supramolecular micellar nanoaggregates based on a novel chitosan/vitamin E succinate copolymer for paclitaxel selective delivery

Lian H, Sun J, Yu YP, Liu YH, Cao W, Wang YJ, Sun YH, Wang SL, He ZG

International Journal of Nanomedicine 2011, 6:3323-3334

Published Date: 12 December 2011

Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups

Hong SC, Lee JH, Lee J, Kim HY, Park JY, Cho J, Lee J, Han DW

International Journal of Nanomedicine 2011, 6:3219-3231

Published Date: 7 December 2011

In vitro and in vivo effects of polyethylene glycol (PEG)-modified lipid in DOTAP/cholesterol-mediated gene transfection

Torben Gjetting, Nicolai Skovbjerg Arildsen, Camilla Laulund, et al

International Journal of Nanomedicine 2010, 5:371-383

Published Date: 25 May 2010