Back to Browse Journals » Core Evidence » Volume 7

Polifeprosan 20, 3.85% carmustine slow-release wafer in malignant glioma: evidence for role in era of standard adjuvant temozolomide

Authors Kleinberg L

Received 9 February 2012

Accepted for publication 8 March 2012

Published 26 October 2012 Volume 2012:7 Pages 115—130


Review by Single-blind

Peer reviewer comments 2

Lawrence Kleinberg

Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Oncology Center Johns Hopkins University, Baltimore, MD, USA

Abstract: The Polifeprosan 20 with carmustine (BCNU, bis-chloroethylnitrosourea, Gliadel®) polymer implant wafer is a biodegradable compound containing 3.85% carmustine which slowly degrades to release carmustine and protects it from exposure to water with resultant hydrolysis until the time of release. The carmustine implant wafer was demonstrated to improve survival in blinded placebo-controlled trials in selected patients with newly diagnosed or recurrent malignant glioma, with little increased risk of adverse events. Based on these trials and other supporting data, US and European regulatory authorities granted approval for its use in recurrent and newly diagnosed malignant glioma, and it remains the only approved local treatment. The preclinical and clinical data suggest that it is optimally utilized primarily in the proportion of patients who may have total or near total removal of gross tumor. The aim of this work was to review the evidence for the use of carmustine implants in the management of malignant astrocytoma (World Health Organization grades III and IV), including newly diagnosed and recurrent disease, especially in the setting of a standard of care that has changed since the randomized trials were completed. Therapy has evolved such that patients now generally receive temozolomide chemotherapy during and after radiotherapy treatment. For patients undergoing repeat resection for malignant glioma, a randomized, blinded, placebo-controlled trial demonstrated a median survival for 110 patients who received carmustine polymers of 31 weeks compared with 23 weeks for 122 patients who only received placebo polymers. The benefit achieved statistical significance only on analysis adjusting for prognostic factors rather than for the randomized groups as a whole (hazard ratio = 0.67, P = 0.006). A blinded, placebo-controlled trial has also been performed for carmustine implant placement in newly diagnosed patients prior to standard radiotherapy. Median survival was improved from 11.6 to 13.9 months (P = 0.03), with a 29% reduction in the risk of death. When patients with glioblastoma multiforme alone were analyzed, the median survival improved from 11.4 to 13.5 months, but this improvement was not statistically significant. When a Cox's proportional hazard model was utilized to account for other potential prognostic factors, there was a significant 31% reduction in the risk of death (P = 0.04) in this subgroup. Data from other small reports support these results and confirm that the incidence of adverse events does not appear to be increased meaningfully. Given the poor prognosis without possibility of cure, these benefits from a treatment with a favorable safety profile were considered meaningful. There is randomized evidence to support the use of carmustine wafers placed during resection of recurrent disease. Therefore, although there is limited specific evidence, this treatment is likely to be efficacious in an environment when nearly all patients receive temozolomide as part of initial management. Given that half of the patients in the randomized trial assessing the value of carmustine implants in recurrent disease had received prior chemotherapy, it is likely that this remains a valuable treatment at the time of repeat resection, even after temozolomide. There are data from multiple reports to support safety. Although there is randomized evidence to support the use of this therapy in newly diagnosed patients who will receive radiotherapy alone, it is now standard to administer both adjuvant temozolomide and radiotherapy. There are survival outcome reports for small cohorts of patients receiving temozolomide with radiotherapy, but this information is not sufficient to support firm recommendations. Based on the rationale and evidence of safety, this approach appears to be a reasonable option as more information is acquired. Available data support the safety of using carmustine wafers in this circumstance, although special attention to surgical guidelines for implanting the wafers is warranted.

Keywords: carmustine, Polifeprosan 20, malignant glioma

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

Rao S, Song Y, Peddie F, Evans AM

International Journal of Nanomedicine 2011, 6:1245-1251

Published Date: 20 June 2011

Current and developing therapeutic agents in the treatment of Chagas disease

Werner Apt

Drug Design, Development and Therapy 2010, 4:243-253

Published Date: 17 September 2010

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010