Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Pluronic mixed micelles overcoming methotrexate multidrug resistance: in vitro and in vivo evaluation

Authors Chen Y, Sha X, Zhang W, Zhong W, Fan Z, Ren Q, Chen L, Fang X

Received 5 January 2013

Accepted for publication 29 January 2013

Published 16 April 2013 Volume 2013:8(1) Pages 1463—1476


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Yanzuo Chen,1 Xianyi Sha,1 Wei Zhang,1,2 Weitong Zhong,1 Zhuoyang Fan,1 Qiuyue Ren,1 Liangcen Chen,1 Xiaoling Fang1

1Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China 2Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA

Abstract: A Pluronic polymeric mixed micelle delivery system was developed in this study by using Pluronic P105 and F127 block copolymers to encapsulate the antitumor compound, methotrexate (MTX). The MTX-loaded Pluronic P105/F127 mixed micelle exhibited the spherical shape with about 22 nm in diameter, high encapsulation efficiency (about 85%) and pH-dependent in vitro drug release. In this study, A-549 and KBv cell lines were selected as multidrug resistance tumor cell models, while H-460 and KB cell lines were chosen as sensitive tumor cells. The MTX-loaded Pluronic P105/F127 mixed micelle exhibited significant higher in vitro cytotoxicity in multidrug resistant tumor cells than that of control (MTX injection) mainly because of higher cellular uptake of MTX. The pharmacokinetic studies indicated that the Pluronic micelles significantly prolonged systemic circulation time of MTX compared to MTX injection. Moreover, a much stronger antitumor efficacy in KBv tumor xenografts nude mice was observed in the MTX-loaded Pluronic P105/F127 mixed micelle group, than MTX. Collectively, Pluronic P105/F127 mixed micelles could significantly enhance the antitumor activity of MTX and might be a promising drug delivery platform for multidrug resistance modulation.

Keywords: multidrug resistance, drug delivery system, micelles, Pluronic, methotrexate

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]