Back to Journals » Journal of Inflammation Research » Volume 5

Placental-mediated increased cytokine response to lipopolysaccharides: a potential mechanism for enhanced inflammation susceptibility of the preterm fetus

Authors Boles, Ross M, Beloosesky, Desai, Belkacemi L

Received 22 March 2012

Accepted for publication 2 May 2012

Published 30 July 2012 Volume 2012:5 Pages 67—75


Review by Single anonymous peer review

Peer reviewer comments 4

Julie L Boles,1 Michael G Ross,1 Ron Beloosesky,2 Mina Desai,1 Louiza Belkacemi1
1Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Torrance, CA, USA; 2Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel

Background: Cerebral palsy is a nonprogressive motor impairment syndrome that has no effective cure. The etiology of most cases of cerebral palsy remains unknown; however, recent epidemiologic data have demonstrated an association between fetal neurologic injury and infection/inflammation. Maternal infection/inflammation may be associated with the induction of placental cytokines that could result in increased fetal proinflammatory cytokine exposure, and development of neonatal neurologic injury. Therefore, we sought to explore the mechanism by which maternal infection may produce a placental inflammatory response. We specifically examined rat placental cytokine production and activation of the Toll-like receptor 4 (TLR4) pathway in response to lipopolysaccharide exposure at preterm and near-term gestational ages.
Methods: Preterm (e16) or near-term (e20) placental explants from pregnant rats were treated with 0, 1, or 10 µg/mL lipopolysaccharide. Explant integrity was assessed by lactate dehydrogenase assay. Interleukin-6 and tumor necrosis alpha levels were determined using enzyme-linked immunosorbent assay kits. TLR4 and phosphorylated nuclear factor kappa light chain enhancer of activated B cells (NFκB) protein expression levels were determined by Western blot analysis.
Results: At both e16 and e20, lactate dehydrogenase levels were unchanged by treatment with lipopolysaccharide. After exposure to lipopolysaccharide, the release of interleukin-6 and tumor necrosis alpha from e16 placental explants increased by 4-fold and 8–9-fold, respectively (P < 0.05 versus vehicle). Conversely, interleukin-6 release from e20 explants was not significantly different compared with vehicle, and tumor necrosis alpha release was only 2-fold higher (P < 0.05 versus vehicle) following exposure to lipopolysaccharide. Phosphorylated NFκB protein expression was significantly increased in the nuclear fraction from placental explants exposed to lipopolysaccharide at both e16 and e20, although TLR4 protein expression was unaffected.
Conclusion: Lipopolysaccharide induces higher interleukin-6 and tumor necrosis alpha expression at e16 versus e20, suggesting that preterm placentas may have a greater placental cytokine response to lipopolysaccharide infection. Furthermore, increased phosphorylated NFκB indicates that placental cytokine induction may occur by activation of the TLR4 pathway.

Keywords: cytokines, lipopolysaccharide, NFκB, placenta, rat pregnancy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]