Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Physiologic load-bearing characteristics of autografts, allografts, and polymer-based scaffolds in a critical sized segmental defect of long bone: an experimental study

Authors Amorosa LF, Lee CH, Aydemir AB, Nizami S, Hsu A, Patel NR, Gardner TR, Navalgund A, Kim D-G, Park SH, Mao JJ, Lee FY

Received 16 January 2013

Accepted for publication 7 March 2013

Published 24 April 2013 Volume 2013:8(1) Pages 1637—1643

DOI https://doi.org/10.2147/IJN.S42855

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2



LF Amorosa,1 CH Lee,2 AB Aydemir,1 S Nizami,1 A Hsu,1 NR Patel,1 TR Gardner,1 A Navalgund,3 D-G Kim,3 SH Park,4 JJ Mao,2 FY Lee1

1Center for Orthopaedic Research, Columbia University Medical Center, New York, NY, 2College of Dental Medicine, Columbia University Medical Center, New York, NY, 3Orthodontics, College of Dentistry, Ohio State University, Columbus, OH, 4Department of Orthopaedic Surgery, University of California at Los Angeles Medical Center, Los Angeles, CA, USA

Background: To address the challenge of treating critical sized intercalary defects, we hypothesized that under physiologic cyclic loading, autografts, allografts, and scaffolds loaded with and without human mesenchymal stem cells (hMSCs) would have different biomechanical characteristics.
Methods: Using a rat femoral defect model, 46 rats were assigned to four groups, ie, autograft (n = 12), allograft (n = 10), scaffold (n = 13), and scaffold with hMSCs (n = 11). The scaffold groups used a 5 mm segment of scaffold composed of 80% poly-ε-caprolactone and 20% hydroxyapatite. Rats were sacrificed 4 months postoperatively, and the repairs were assessed radiographically and biomechanically.
Results: Autograft and allograft groups exhibited the most bridging callus, while the scaffold/hMSCs group had more callus than the scaffold repairs. Although signs of radiographic healing did not accurately reflect restoration of mechanical properties, addition of hMSCs on the scaffold enhanced bone formation. The scaffold alone group had significantly lower elastic and viscous stiffness and higher phase angles than other repairs and the contralateral controls. Addition of hMSCs increased the elastic and viscous stiffness of the repair, while decreasing the phase angle.
Conclusion: Further comparative analysis is needed to optimize clinical use of scaffolds and hMSCs for critical sized defect repairs. However, our results suggest that addition of hMSCs to scaffolds enhances mechanical simulation of native host bone.

Keywords: fracture healing, scaffolds, human mesenchymal stem cells, tissue engineering

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.