Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Physicochemical properties, cytotoxicity, and antimicrobial activity of sulphated zirconia nanoparticles

Authors Mftah A, Alhassan FH, Al-Qubaisi MS, El Zowalaty ME, Webster TJ, Sh-eldin M, Rasedee A, Taufiq-Yap YH, Rashid SS

Received 12 April 2014

Accepted for publication 15 September 2014

Published 19 January 2015 Volume 2015:10(1) Pages 765—774

DOI https://doi.org/10.2147/IJN.S66058

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Professor Carlos Rinaldi

Ae Mftah,1 Fatah H Alhassan,2,3 Mothanna Sadiq Al-Qubaisi,4 Mohamed Ezzat El Zowalaty,4 Thomas J Webster,5,6 Mohammed Sh-eldin,7 Abdullah Rasedee,8 Yun Hin Taufiq-Yap,2,3 Shah Samiur Rashid1

1Department of Chemistry, Faculty of Industrial Sciences and Technology, University Malaysia Pahang, Malaysia; 2Catalysis Science and Technology Research Centre, 3Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia; 4Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia; 5Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 7Solar Energy Research Institute, University Kebangsaan Malaysia, Selangor, 8Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia

Abstract: Nanoparticle sulphated zirconia with Brønsted acidic sites were prepared here by an impregnation reaction followed by calcination at 600°C for 3 hours. The characterization was completed using X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Brunner-Emmett-Teller surface area measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy. Moreover, the anticancer and antimicrobial effects were investigated for the first time. This study showed for the first time that the exposure of cancer cells to sulphated zirconia nanoparticles (3.9–1,000 µg/mL for 24 hours) resulted in a dose-dependent inhibition of cell growth, as determined by (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Similar promising results were observed for reducing bacteria functions. In this manner, this study demonstrated that sulphated zirconia nanoparticles with Brønsted acidic sites should be further studied for a wide range of anticancer and antibacterial applications.

Keywords: sulphated zirconia, nanoparticles, antimicrobial, anticancer

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications

Hassiba AJ, El Zowalaty ME, Webster TJ, Abdullah AM, Nasrallah GK, Khalil KA, Luyt AS, Elzatahry AA

International Journal of Nanomedicine 2017, 12:2205-2213

Published Date: 21 March 2017

Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites

Saifullah B, El Zowalaty ME, Arulselvan P, Fakurazi S, Webster TJ, Geilich BM, Hussein MZ

International Journal of Nanomedicine 2016, 11:3225-3237

Published Date: 15 July 2016

Preparation, characterization, and in ovo vaccination of dextran-spermine nanoparticle DNA vaccine coexpressing the fusion and hemagglutinin genes against Newcastle disease

Firouzamandi M, Moeini H, Hosseini SD, Bejo MH, Omar AR, Mehrbod P, El Zowalaty ME, Webster TJ, Ideris A

International Journal of Nanomedicine 2016, 11:259-267

Published Date: 14 January 2016

Cytotoxicity and physicochemical characterization of iron–manganese-doped sulfated zirconia nanoparticles [Corrigendum]

Al-Fahdawi MQ, Rasedee A, Al-Qubaisi MS, Alhassan FH, Rosli R, El Zowalaty ME, Naadja SE, Webster TJ, Taufiq-Yap YH

International Journal of Nanomedicine 2015, 10:6657-6658

Published Date: 28 October 2015

Cytotoxicity and physicochemical characterization of iron–manganese-doped sulfated zirconia nanoparticles

Al-Fahdawi MQ, Rasedee A, Al-Qubaisi MS, Alhassan FH, Rosli R, El Zowalaty ME, Naadja SE, Webster TJ, Taufiq-Yap YH

International Journal of Nanomedicine 2015, 10:5739-5750

Published Date: 10 September 2015

The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities

El Zowalaty ME, Hussein Al Ali SH, Husseiny MI, Geilich BM, Webster TJ, Hussein MZ

International Journal of Nanomedicine 2015, 10:3269-3274

Published Date: 30 April 2015

Synthesis, characterization, controlled release, and antibacterial studies of a novel streptomycin chitosan magnetic nanoantibiotic

Hussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Ismail M, Webster TJ

International Journal of Nanomedicine 2014, 9:549-557

Published Date: 16 January 2014

Synthesis, characterization, and antimicrobial properties of copper nanoparticles

Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA

International Journal of Nanomedicine 2013, 8:4467-4479

Published Date: 21 November 2013

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Is increasing the dose of Entecavir effective in partial virological responders?

Erturk A, Adnan Akdogan R, Parlak E, Cure E, Cumhur Cure M, Ozturk C

Drug Design, Development and Therapy 2014, 8:621-625

Published Date: 29 May 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010