Back to Browse Journals » Therapeutics and Clinical Risk Management » Volume 10

Pharmacokinetic drug–drug interactions between 1,4-dihydropyridine calcium channel blockers and statins: factors determining interaction strength and relevant clinical risk management

Authors Zhou YT, Yu LS, Zeng S, Huang YW, Xu HM, Zhou Q

Received 7 October 2013

Accepted for publication 14 November 2013

Published 20 December 2013 Volume 2014:10 Pages 17—26

DOI https://doi.org/10.2147/TCRM.S55512

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Yi-Ting Zhou,1 Lu-Shan Yu,2 Su Zeng,2 Yu-Wen Huang,1 Hui-Min Xu,1 Quan Zhou1

1Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, 2Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China

Background: Coadministration of 1,4-dihydropyridine calcium channel blockers (DHP-CCBs) with statins (or 3-hydroxy-3-methylglutaryl-coenzyme A [HMG-CoA] reductase inhibitors) is common for patients with hypercholesterolemia and hypertension. To reduce the risk of myopathy, in 2011, the US Food and Drug Administration (FDA) Drug Safety Communication set a new dose limitation for simvastatin, for patients taking simvastatin concomitantly with amlodipine. However, there is no such dose limitation for atorvastatin for patients receiving amlodipine. The combination pill formulation of amlodipine/atorvastatin is available on the market. There been no systematic review of the pharmacokinetic drug–drug interaction (DDI) profile of DHP-CCBs with statins, the underlying mechanisms for DDIs of different degree, or the corresponding management of clinical risk.
Methods: The relevant literature was identified by performing a PubMed search, covering the period from January 1987 to September 2013. Studies in the field of drug metabolism and pharmacokinetics that described DDIs between DHP-CCB and statin or that directly compared the degree of DDIs associated with cytochrome P450 (CYP)3A4-metabolized statins or DHP-CCBs were included. The full text of each article was critically reviewed, and data interpretation was performed.
Results: There were three circumstances related to pharmacokinetic DDIs in the combined use of DHP-CCB and statin: 1) statin is comedicated as the precipitant drug (pravastatin–nimodipine and lovastatin–nicardipine); 2) statin is comedicated as the object drug (isradipine–lovastatin, lacidipine–simvastatin, amlodipine–simvastatin, benidipine-simvastatin, azelnidipine–simvastatin, lercanidipine–simvastatin, and amlodipine–atorvastatin); and 3) mutual interactions (lercanidipine–fluvastatin). Simvastatin has an extensive first-pass effect in the intestinal wall, whereas atorvastatin has a smaller intestinal first-pass effect. The interaction with simvastatin seems mainly driven by CYP3A4 inhibition at the intestinal level, whereas the interaction with atorvastatin is more due to hepatic CYP3A4 inhibition. The interaction of CYP3A4 inhibitor with simvastatin has been more pronounced compared with atorvastatin. From the current data, atorvastatin seems to be a safer CYP3A4-statin for comedication with DHP-CCB. There is no convincing evidence that amlodipine is an unusual DHP-CCB, either as a precipitant drug or as an object drug, from the perspective of CYP3A4-mediated drug metabolism. Amlodipine may have interactions with CYP3A5 in addition to CYP3A4, which may explain its particular characteristics in comparison with other DHP-CCBs. The degree of DDIs between the DHP-CCB and statin and the clinical outcome depends on many factors, such as the kind of statin, physicochemical proprieties of the DHP-CCB, the dose of either the precipitant drug or the object drug, the sex of the patient (eg, isradipine–lovastatin), route of drug administration (eg, oral versus intravenous nicardipine–lovastatin), the administration schedule (eg, nonconcurrent dosing method versus concurrent dosing method), and the pharmacogenetic status (eg, CYP3A5-nonexpressers versus CYP3A5-expressers).
Conclusion: Clinical professionals should enhance risk management regarding the combination use of two classes of drugs by increasing their awareness of the potential changes in therapeutic efficacy and adverse drug reactions, by rationally prescribing alternatives, by paying attention to dose adjustment and the administration schedule, and by review of the appropriateness of physician orders. Further study is needed – the DDIs between DHP-CCBs and statins have not all been studied in humans, from either a pharmacokinetic or a clinical perspective; also, the strength of the different pharmacokinetic interactions of DHP-CCBs with statins should be addressed by systematic investigations.

Keywords: CYP3A4, 1,4-dihydropyridine, drug–drug interactions, HMG-CoA reductase inhibitors, myopathy, polypharmacy, physicochemical phenomena, prescription auditing

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Weight-based dosing in medication use: what should we know?

Pan SD, Zhu LL, Chen M, Xia P, Zhou Q

Patient Preference and Adherence 2016, 10:549-560

Published Date: 12 April 2016

A stewardship intervention program for safe medication management and use of antidiabetic drugs

Zhao RY, He XW, Shan YM, Zhu LL, Zhou Q

Clinical Interventions in Aging 2015, 10:1201-1212

Published Date: 23 July 2015

The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection

Jin JF, Zhu LL, Chen M, Xu HM, Wang HF, Feng XQ, Zhu XP, Zhou Q

Patient Preference and Adherence 2015, 9:923-942

Published Date: 2 July 2015

Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy

Wang ZY, Chen M, Zhu LL, Yu LS, Zeng S, Xiang MX, Zhou Q

Therapeutics and Clinical Risk Management 2015, 11:449-467

Published Date: 19 March 2015

Personalized therapeutics for levofloxacin: a focus on pharmacokinetic concerns

Gao CH, Yu LS, Zeng S, Huang YW, Zhou Q

Therapeutics and Clinical Risk Management 2014, 10:217-227

Published Date: 27 March 2014

Appropriateness of administration of nasogastric medication and preliminary intervention

Zhu LL, Xu LC, Wang HQ, Jin JF, Wang HF, Zhou Q

Therapeutics and Clinical Risk Management 2012, 8:393-401

Published Date: 20 November 2012

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

Rao S, Song Y, Peddie F, Evans AM

International Journal of Nanomedicine 2011, 6:1245-1251

Published Date: 20 June 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010