Back to Journals » Clinical Ophthalmology » Volume 12

Peripheral refraction and image blur in four meridians in emmetropes and myopes

Authors Shen J, Spors F, Egan D, Liu C

Received 9 September 2017

Accepted for publication 19 December 2017

Published 19 February 2018 Volume 2018:12 Pages 345—358


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Scott Fraser

Jie Shen,1 Frank Spors,1 Donald Egan,2 Chunming Liu3

1Western University of Health Sciences, College of Optometry, Pomona, CA, 2University of Pikeville Kentucky College of Optometry, Pikeville, KY, 3Pacific University College of Optometry, Forest Grove, OR, USA

The peripheral refractive error of the human eye has been hypothesized to be a major stimulus for the development of its central refractive error.
Aim: The purpose of this study was to investigate the changes in the peripheral refractive error across horizontal, vertical and two diagonal meridians in emmetropic and low, moderate and high myopic adults.
Subjects and methods:
Thirty-four adult subjects were recruited and aberration was measured using a modified commercial aberrometer. We then computed the refractive error in power vector notation from second-order Zernike terms. Statistical analysis was performed to evaluate the statistical differences in refractive error profiles between the subject groups and across all measured visual field meridians.
Small amounts of relative myopic shift were observed in emmetropic and low myopic subjects. However, moderate and high myopic subjects exhibited a relative hyperopic shift in all four meridians. Astigmatism J0 and J45 had quadratic or linear changes dependent on the visual field meridians. Peripheral Sphero-Cylindrical Retinal Image Blur increased in emmetropic eyes in most of the measured visual fields.
The findings indicate an overall emmetropic or slightly relative myopic periphery (spherical or oblate retinal shape) formed in emmetropes and low myopes, while moderate and high myopes form relative hyperopic periphery (prolate, or less oblate, retinal shape). In general, human emmetropic eyes demonstrate higher amount of peripheral retinal image blur.

off-axis, refractive error, aberrometry, myopia, image quality

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]