Back to Journals » International Journal of Nanomedicine » Volume 13 » T-NANO 2014 Abstracts

Patterning artificial lipid bilayer on nanostructured surfaces

Authors Ghosh Moulick R, Panaitov G, Choi SE, Mayer D, Offenhäusser A

Received 18 October 2016

Accepted for publication 31 October 2016

Published 15 March 2018 Volume 2018:13(T-NANO 2014 Abstracts) Pages 55—58


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Lei Yang

Ranjita Ghosh Moulick,1 Gregor Panaitov,2 Sung-Eun Choi,2 Dirk Mayer,2 Andreas Offenhäusser2

1School of Physical Science, Jawaharlal Nehru University, New Delhi, India; 2Bioelectronics, ICS8/PGI8, Forschungszentrum Juelich, Juelich, Germany

Abstract: Artificial lipid bilayer on solid substrate plays an important role as an interface between nanotechnology and biology. In this study, grid structures were patterned on Au-Nb-glass substrate and artificial bilayer was prepared on these structures. The fluidity was checked using fluorescence recovery after photobleaching (FRAP), and neuronal adhesion was monitored on such structure using EphrinA5-tethered lipid bilayer. EphrinA5 is a ligand that binds to the Eph receptors of rat cortical neurons and influences cellular adhesion. Our result elucidated that influence of these nanopatterned protein-tethered lipid bilayer on cellular guidance and signaling can address many underlying mechanisms of cellular functioning and help us to understand and differentiate the signaling procedure in cancer and neurodegenerative diseases.

Keywords: Au-Nb, FRAP, EphrinA5, lipid bilayer, neurodegenerative diseases

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]