Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Optimized synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics

Authors Cheng M, Chen H, Wang Y, Xu H, He B, Han J, Zhang Z

Received 2 October 2013

Accepted for publication 6 December 2013

Published 24 January 2014 Volume 2014:9(1) Pages 695—710

DOI https://doi.org/10.2147/IJN.S55255

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Mingrong Cheng,1,2,* Houxiang Chen,3,* Yong Wang,4,* Hongzhi Xu,5 Bing He,5 Jiang Han,1 Zhiping Zhang1

1Department of General Surgery, 2Department of Endoscopy, Pudong New Area District Zhoupu Hospital, Shanghai, People's Republic of China; 3Zhejiang Huafon Fiber Research Institute, Zhejiang Huafon Spandex Co, Ltd, Wenzhou, People's Republic of China; 4School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, People’s Republic of China; 5Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China

*These authors contributed equally to this work

Abstract: The nanoparticle drug delivery system, which uses natural or synthetic polymeric material as a carrier to deliver drugs to targeted tissues, has a broad prospect for clinical application for its targeting, slow-release, and biodegradable properties. Here, we used chitosan (CTS) and hepatoma cell-specific binding molecule glycyrrhetinic acid to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by infrared (IR) spectra and hydrogen-1 nuclear magnetic resonance. The GA-CTS/5-fluorouracil (5-FU) nanoparticles were synthesized by combining GA-CTS and 5-FU and conjugating 5-FU onto the GA-CTS nanomaterial. The central composite design was performed to optimize the preparation process as CTS:tripolyphosphate sodium (TPP) weight ratio =5:1, 5-FU:CTS weight ratio =1:1, TPP concentration =0.05% (w/v), and cross-link time =50 minutes. GA-CTS/5-FU nanoparticles had a mean particle size of 193.7 nm, a polydispersity index of 0.003, a zeta potential of +27.4 mV, and a drug loading of 1.56%. The GA-CTS/5-FU nanoparticle had a protective effect on the drug against plasma degrading enzyme, and provided a sustained release system comprising three distinct phases of quick, steady, and slow release. Our study showed that the peak time, half-life time, mean residence time and area under the curve of GA-CTS/5-FU were longer or more than those of the 5-FU group, but the maximum concentration (Cmax) was lower. We demonstrated that the nanoparticles accumulated in the liver and have significantly inhibited tumor growth in an orthotropic liver cancer mouse model.

Keywords: liver cancer, targeted therapy, chemotherapy, pharmacokinetics efficacy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Synthesis of liver-targeting dual-ligand modified GCGA/5-FU nanoparticles and their characteristics in vitro and in vivo

Chen M, Gao X, Wang Y, Chen H, He B, Li Y, Han J, Zhang Z

International Journal of Nanomedicine 2013, 8:4265-4276

Published Date: 6 November 2013

Glycyrrhetinic acid-modified chitosan nanoparticles enhanced the effect of 5-fluorouracil in murine liver cancer model via regulatory T-cells

Cheng M, Xu H, Wang Y, Chen H, He B, Gao X, Li Y, Han J, Zhang Z

Drug Design, Development and Therapy 2013, 7:1287-1299

Published Date: 25 October 2013

Readers of this article also read:

Systemic cytokine signaling via IL-17 in smokers with obstructive pulmonary disease: a link to bacterial colonization?

Andelid K, Tengvall S, Andersson A, Levänen B, Christenson K, Jirholt P, Åhrén C, Qvarfordt I, Ekberg-Jansson A, Lindén A

International Journal of Chronic Obstructive Pulmonary Disease 2015, 10:689-702

Published Date: 27 March 2015

Predictors of remission in the treatment of major depressive disorder: real-world evidence from a 6-month prospective observational study

Novick D, Hong J, Montgomery W, Dueñas H, Gado M, Haro JM

Neuropsychiatric Disease and Treatment 2015, 11:197-205

Published Date: 22 January 2015

In situ precipitation: a novel approach for preparation of iron-oxide magnetoliposomes

Xia S, Li P, Chen Q, Armah M, Ying X, Wu J, Lai J

International Journal of Nanomedicine 2014, 9:2607-2617

Published Date: 23 May 2014

Polyhydroxylated fullerene attenuates oxidative stress-induced apoptosis via a fortifying Nrf2-regulated cellular antioxidant defence system

Ye SF, Chen M, Jiang YQ, Chen ML, Zhou T, Wang YG, Hou ZQ, Ren L

International Journal of Nanomedicine 2014, 9:2073-2087

Published Date: 29 April 2014

Nanoparticles for multimodal in vivo imaging in nanomedicine

Key J, Leary JF

International Journal of Nanomedicine 2014, 9:711-726

Published Date: 29 January 2014

Methods and rationale used in a matched cohort study of the incidence of new primary cancers following prostate cancer

Cronin-Fenton DP, Antonsen S, Cetin K, Acquavella J, Daniels A, Lash TL

Clinical Epidemiology 2013, 5:429-437

Published Date: 31 October 2013

Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo

Li Y, Liu J, Zhong Y, Zhang J, Wang Z, Wang L, An Y, Lin M, Gao Z, Zhang D

International Journal of Nanomedicine 2011, 6:2805-2819

Published Date: 9 November 2011

Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

Xu W, Ganz C, Weber U, Adam M, Holzhüter G, Wolter D, Frerich B, Vollmar B, Gerber T

International Journal of Nanomedicine 2011, 6:1543-1552

Published Date: 2 August 2011